OLD DOMINION UNIVERSITY

Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456

DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY

Final Report

Prepared by

Principal Investigators: Daniel M. Dauer ¹

Michael F. Lane ¹ Roberto J. Llansó ²

- Department of Biological Sciences
 Old Dominion University
 Norfolk, VA 23529-0456
- Versar, Inc.9200 Rumsey RoadColumbia, MD 21045

Submitted to:

U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403

Attn: Ms. Kelly Shenk

April 30, 2002

OLD DOMINION UNIVERSITY

Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456

DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY

Final Report

Prepared by

Principal Investigators: Daniel M. Dauer ¹

Michael F. Lane ¹ Roberto J. Llansó ²

- Department of Biological Sciences
 Old Dominion University
 Norfolk, VA 23529-0456
- Versar, Inc.9200 Rumsey RoadColumbia, MD 21045

Submitted to:

U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403

Attn: Ms. Kelly Shenk

April 30, 2002

Table of Contents

List o	List of Figures ii				
List o	f Table	siii			
List o	of Appei	ndicesv			
I.	Introd	luction			
II.	Metho	ods			
	A.	Overview			
	В.	Database			
	C.	Candidate Metrics			
	D.	Data Aggregation			
	E.	Spatial Scales and Analytical Scenarios			
	F.	Discriminant Function Calibration and Validation			
	G.	Salinity Corrections			
	H.	Variable Reduction Approaches			
III.	Result	ts8			
	A.	Description of Database			
	B.	Within Habitat Type Scenarios			
	C.	Within Salinity Regime Scenarios			
	D.	Baywide Scenarios			
IV.	Discus	ssion			
	A.	Overview of Results			
	В.	Usage Constraints			
	C.	Technical Approaches to Implementation			
	D.	Recommendations			
VI.	Litera	nture Cited			
Figur	es	22			
Table	es	24			
Appe	ndices	47			

List of Figures

Figure 1.	Discriminant function classification efficiencies for individual habitat types for
	classifying Mesohaline severely degraded sites (excluding Low D.O. sites) into the
	Contaminant and Other stress groups. Numbers above the bars indicate the number
	of observations within each habitat type

Figure 2. Discriminant function classification efficiencies for individual habitat types for the Baywide discriminant function for classifying severely degraded and degraded sites (including Low D.O. sites) into the Contaminant and Other stress groups. Numbers above the bars indicate the number of observations within each habitat type. . . 23

List of Tables

Table 1.	Data aggregation schemes used in analyses
Table 2.	Candidate metrics used for analytical tool development
Table 3.	Habitat types for the Chesapeake Bay B-IBI as defined by Weisberg et al. (1997)
Table 4.	ERM guidelines for 24 trace metals (ppm dry wt) and organic compounds (ppb, dry wt) as defined from Long et al. (1995)
Table 5.	Number of sampling location/date combinations for each monitoring program within Chesapeake Bay
Table 6.	Frequency and percentage of sites and mean B-IBI for sites within each status classification category
Table 7.	Frequency of sites classified as severely degraded and degraded within habitat types
Table 8.	Frequency of sites classified as severely degraded and degraded within habitat types
Table 9.	Frequency of sites classified as severely degraded and degraded within each habitat and effect type for each of the sediment contaminant classification schemes 29
Table 10.	Classification efficiencies of linear discriminant functions developed for the Within Habitat Type scenarios for all available stress groups
Table 11.	Classification efficiencies of linear discriminant functions developed for Within Habitat Type scenarios for discriminating between the Contaminant and Other stress groups
Table 12.	Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites into one of the four stress groups
Table 13.	Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites into the Contaminant, Combined and Unknown stress groups 36
Table 14.	Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites into the Contaminant and all Other stress groups with and without Low D.O. sites

Table 15.	Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into one of the four stress groups
Table 16.	Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into the Contaminant, Combined and Unknown stress groups
Table 17.	Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into the Contaminant and all Other stress groups with and without Low D.O. sites
Table 18.	Classification efficiencies of linear discriminant functions developed for classifying Tidal Freshwater and Oligohaline sites into the Contaminant and all Other stress groups
Table 19.	Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between four potential stress groups for both uncorrected and salinity corrected data
Table 20.	Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant, Combined and Unknown stress groups for both uncorrected and salinity corrected data
Table 21.	Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant and all Other stress groups with Low D.O. sites for both uncorrected and salinity corrected data
Table 22.	Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant and all Other groups without Low D.O. sites for both uncorrected and salinity corrected data
Table 23.	Classification efficiencies of discriminant functions developed for selected scenarios after application of the stepwise discriminant and ANOVA variable reduction procedures
Table 24.	Coefficients and cutoff values for the Baywide linear discriminant function for classifying severely degraded and degraded sites into the Contaminant and Other stress groups using "uncorrected" data

List of Appendices

Appendix A.	List of species classified as epifaunal
Appendix B.	List of species classified as deep deposit feeders
Appendix C.	List of species classified as suspension feeders
Appendix D.	List of species classified as interface feeders
Appendix E.	List of species classified into the carnivore/omnivore feeding group category 51
Appendix F.	Number of contaminants exceeding the Effects Range Median concentration (ERM Conc.), the mean Sediment Quality Guidelines (SQG) quotient, the number of missing analytes, and a listing of missing analytes for each station date combination classified as severely degraded or degraded. Habitat type is based on Weisberg et al. (1997)
Appendix G.	Correlations between benthic bioindicators and salinity
Appendix H.	Regression relationships for salinity corrections of selected benthic bioindicators

I. Introduction

Benthic macrofauna are an important component of estuarine ecosystems. These organisms are a food source for higher trophic levels including fishes and crabs (Virnstein 1977, 1979; Holland et al. 1980; Dauer et al. 1982) and birds (Botton 1984; Quammen 1984). Benthic macrofauna affect both the physical and chemical properties of the sediment and the overlying water column (e.g., Rhoads and Young 1970; Rhoads 1973; Aller 1978, 1980), influence nutrient cycling (Rowe et al 1975; Zeiteschel 1980; Flint and Kamykowski 1984), and are capable of directly controlling phytoplankton biomass in the water column (Cleorn 1982; Officer et al 1982; Cohen et al. 1984; Nichols 1985). Because of these characteristics, monitoring of the benthos provides important information for making management decisions in marine systems (Bilyard 1987). Also, the relatively long life span and sedentary nature of these organisms make them good indicators of water quality and the effects of man-made disturbances on aquatic systems (Reish 1973; Pearson and Rosenberg 1978; Bilyard 1987).

Numerous studies have documented the effects of pollution and other anthropogenic activities on macrofaunal communities within estuaries (e.g., Boesch 1972; Brown et al. 1987; Beukema 1991; Gaston and Young 1992; Dauer et al. 1992, 1993; Dauer 1993, 1997; Dauer and Alden 1995). Investigators attempting to describe the effects of pollution on benthic macrofaunal communities have often experienced the problem of distinguishing the natural variation in these communities due to habitat type (i.e., salinity regime, sediment type, depth, etc.) from the effects caused by pollution. These problems have resulted in the development of multi-metric indices that allow for the characterization of benthic biological condition within and between habitat types. This approach has been used primarily in freshwater ecosystems and is typically referred to as the index of biotic integrity (IBI) approach (see reviews by Davis and Simon 1995; Karr and Chu 1999). Recently, a benthic index of biotic integrity (B-IBI) was developed for the Chesapeake Bay and its major tributaries (Weisberg et al. 1997). This index compares the deviation of community metrics from values at reference sites that are assumed to be minimally impacted by anthropogenic activities. This index has been successfully used to describe the status of and long-term trends in benthic community conditions within the Chesapeake Bay and its tributaries in relation to water quality characteristics (Dauer et al. 1998; 1999) and is correlated to measures of land use and nutrient loads within the Chesapeake Bay watershed (Dauer et al. 2000). However, one of the major limitations of this index is its inability to directly identify the source of stress that is the cause of degraded benthic community condition.

The objective of this study was to develop analytical tools that are capable of classifying regions in Chesapeake Bay identified as having degraded benthic communities into categories distinguished by the type of stress experienced by those communities. Sediment contaminants and bottom low dissolved oxygen concentrations were identified as the primary sources of anthropogenic stress on benthic communities and an attempt was made to develop multivariate statistical tools that could distinguish between these sources of stress. Ultimately, environmental managers could use these tools to make recommendations for analytical chemistry studies to confirm the sources and levels of contaminants in predetermined regions of concern and to develop management plans for controlling contaminant effects.

II. Methods

A. Overview

The objective of this study was to develop statistical diagnostic tools that would allow environmental managers to identify potential sources of anthropogenic stress to benthic communities within Chesapeake Bay. To accomplish this task, data characterizing benthic community condition were aggregated at different spatial scales and with a variety of defined stress groups (Table 1). Three spatial scales of aggregation were identified: (1) a Within Habitat scale as defined by Weisberg et al.(1997), (2) a Within Salinity Regimes scale, and (3) on a Baywide scale. At each spatial scale, stress categories were defined. Four types of stress groups were defined: 1) a Contaminant stress group, 2) a low dissolved oxygen (Low DO) stress group, 3) a combined contaminant and low dissolved oxygen (Combined) stress group, and 4) an Unknown stress group. For some scenarios, the Low DO stress group was excluded for two reasons: (1) regions affected by low dissolved oxygen stress, particularly associated with a stratified water column, are fairly well known; and (2) benthic community condition due to contaminant stress might be less unique and, therefore, less distinguishable from other sources of stress when including benthic community data affected by low DO stress. For each spatial scale and stress groups combination tested, three Contaminant stress groups criteria and two levels of benthic community degradation were applied to each data set (Table 1).

Linear discriminant analysis was used to develop diagnostic tools to differentiate between stress groups as defined for each scenario (Kachigan 1991; Huberty1994). Linear discriminant analysis is a procedure that uses a set of predictor variables from a calibration data set to create a multivariate discriminant function for assigning observations into one of two or more mutually exclusive qualitative groups. Once developed, the discriminant function can be used to assign new observations into the groups defined in the calibration data set (Kachigan 1991; Huberty 1994). Classification of new observations into the groups is accomplished by one of two methods. The discriminant scores calculated for each observation can be compared to a predetermined cutoff value or values that determine group membership or posterior probabilities of group membership calculated during the analysis are examined and new observations are assigned to the group with the highest probability of group membership. For this study, linear discriminant functions for stress group classification were developed using bioindicators calculated from a subset of data compiled from existing and historical monitoring programs conducted within Chesapeake Bay. A second subset of this data set was used to validate the discriminant functions developed. A similar approach has been used to differentiate between degraded and reference benthic communities in the Gulf of Mexico (Engle et al. 1994; Engle and Summers 1999; Paul et al. 2001) and more recently to identify stress source within a specific habitat type in Chesapeake Bay (Christman and Dauer, 2002)

B. Database

The analytical tools were calibrated and validated using data collected within Chesapeake Bay that were used previously to develop the Chesapeake Bay Program's Benthic Index of Biotic Integrity

(B-IBI) and USEPA's Mid-Atlantic Integrated Assessment (MAIA) Program's Benthic Index data (Weisberg et al. 1997; Llansó, In Review). Additional data from sites monitored as part of probability-based sampling regime for the Chesapeake Bay Program's Benthic Monitoring Program (Dauer 1999; Dauer and Rodi 1999, 2001; Versar Inc. 2001) and for the Chesapeake Bay Program's Ambient Toxicity Program (McGee et al. 2001) were also included. Data used in these analyses met the following criteria: (1) all samples were collected within the geographic boundaries of Chesapeake Bay and its tributaries, (2) all benthic biological samples were collected using a Young grab with a sampling area of 0.0440 m², (3) all benthic biological samples were collected during the period of July 15 through September 30, (4) measurements of dissolved oxygen were collected concurrently with the biological data, and (5) sediment contaminant data were collected during the same year as the biological samples. Finally, only sites classified as either degraded (B-IBI < 2.6 but > 2.0) or severely degraded (B-IBI ≤ 2.0) were retained for subsequent analysis.

C. Candidate Metrics

Table 2 provides the list of candidate metrics used for the analyses that included measures of abundance, richness, proportional abundance, species diversity and dominance of species in various taxonomic, life history, and trophic categories. Additional metrics included total community biomass, the ratio of epifaunal species abundance to infaunal abundance and the ratio of total biomass to total abundance. Abundance metrics were calculated as the total count of individuals for each metric category per replicate. Richness metrics were calculated as the number of taxa for each metric category per replicate. Proportional abundance metrics were calculated as the value of the total count of individuals per replicate for each metric category divided by the total count of infaunal individuals per replicate. Species diversity metrics were estimated using the Shannon-Wiener diversity index (H') which is calculated as follows:

$$H' = -\sum_{i=1}^{s} p_i \log_2 p_i$$

where p_i is the proportion of the *i*th species and *S* is the number of species. Dominance metrics were estimated using Pielou's evenness index (J) which is calculated as follows:

$$J = \frac{H'}{\log_2 S}$$

where H' is the diversity index and S is the total number of species collected. Diversity and dominance metrics were calculated only for the total infaunal and epifaunal life history categories. The assignment of species to life history and feeding categories was based on designations used for the development of the B-IBI for Chesapeake Bay (Weisberg et al. 1997). Appendix A provides a list of species designated as epifaunal while Appendices B-E provide lists of species belonging to each feeding group used. Taxonomic category metrics were calculated using only infaunal species.

D. Data Aggregation

1. Spatial Scales

Three spatial scales of aggregation were identified: (1) a Within Habitat scale, (2) a Within Salinity Regimes scale, and (3) on a Baywide scale. Since estuarine macrobenthic community structure varies in relation to salinity and sediment type, all sites were first classified into the seven habitat types defined for the Chesapeake Bay by Weisberg et al. (1997)(Table 3) for the Within Habitat scale for spatial aggregation. Our *a priori* expectation was that benthic community indicators allowing discrimination between stress groups would be more effective if they were developed separately for each major habitat type. For example, the tidal freshwater and polyhaline regions have no species in common and higher level metrics based upon community characteristics might also have better discriminatory abilities at the habitat spatial scale. The other two spatial aggregation scales increased the number of samples available for developing any discriminant function.

2. Stress Categories

Sites were classified into stress groups using four aggregation schemes (Table 1). The maximum number of stress groups was four: (1) a contaminant effect stress group (Contaminant), (2) a low dissolved oxygen effect stress group (Low DO), (3) a combined contaminant and low dissolved oxygen effect stress group (Combined), and 4) and a stress group of unknown source(s) (Unknown). The criteria for inclusion in the Contaminant stress group was based on sediment quality guidelines established for a suite of organic and metal contaminants known to adversely affect benthic invertebrates. Three different criteria, presented below, were used and separately analyzed for discriminant function development. A site was classified into Low DO stress group if dissolved oxygen concentration at the time of collection was ≤ 2 ppm. A site was classified into the Combined stress group if it met both the Low DO criterion and the Contaminant criterion. Sites not classified into either the Contaminant, Low DO or Combined stress groups were assigned to the Unknown group.

3. Contaminant Stress Category Criteria

Three different sediment quality guideline (SQG) schemes were used. Each of the classification schemes was based on sediment quality guidelines established for a suite of organic and metal contaminants known to adversely affect benthic invertebrates. The first contaminant stress group criterion used the Effects Range Median (ERM) values developed to represent concentrations at or above which adverse toxic effects occur frequently (Long and Morgan 1990; Long et al. 1995). In the first classification scheme, referred to as the ERM Exceedance classification scheme, a site was assigned to the contaminant stress group if any of a suite of 24 sediment contaminants (Table 4) detected at the site exceeded the ERM concentration for the contaminant as specified by Long et al. (1995). Several of the analytes originally listed by Long et al. (1995) were not used in this study because they were not measured at a large number of sites.

The second and third classification schemes were based on mean sediment quality guideline (SQG) quotients. This approach involves the calculation of the mean of ratios of individual contaminant concentrations relative to their corresponding ERM values. The mean SQG quotients are then compared to thresholds established for specific geographic regions (Hyland et al. in preparation). For this study, two mean SQG quotients were used.

One SQG quotient value (SQV) was developed for the EMAP Virginian province which includes all estuarine locations from Chesapeake Bay to Cape Cod. We used the median SGV value derived from a frequency distribution plot. The plot included all sites where the benthic community condition was declared degraded and at which no low dissolved oxygen effects occurred. The Virginian Province median SQV value was 0.098. This threshold represents median SQG quotient at or above which there is a high risk that benthic communities will be degraded within the Virginian province (Hyland et al. in preparation).

The second SQG quotient value (SQV) was developed for the region encompassing the EMAP Lousianian, Carolinian, and Virginian provinces combined and has a value of 0.044. The region includes samples from the Gulf of Mexico and the eastern U.S. estuaries from north Florida through Cape Cod. This threshold represents the median SQV value at or above which there is a high risk that benthic communities will be degraded within all three provinces combined (Hyland et al., in preparation) and was used to assign sites into the contaminant stress group for the classification scheme referred to as All Province.

4. Level of Benthic Community Degradation

Only sites classified as either degraded (B-IBI < 2.6 but > 2.0) or severely degraded (B-IBI ≤ 2.0) were retained for subsequent analysis. Our *a priori* expectation was that the most severely degraded benthic community conditions might allow better discrimination between stress groups. Consequently for each spatial scale and stress group combination discriminant functions were developed for data using only the severely degraded sites and also using both severely degraded and degraded sites. The latter data aggregation increased the number of samples available for developing any discriminant function.

E. Spatial Scales and Analytical Scenarios

1. Within Habitat Scale

The first set of analytical scenarios, referred to as Within Habitat Type scenarios, were intended to develop discriminant functions for six of the seven separate habitat types as defined by Weisberg et al. (1997). For each habitat type, functions were created to discriminate between the Four Stress Groups combination and for the Two Stress Groups combination of a Contaminant stress group and all other stress groups combined. No attempt was made to develop functions for the polyhaline sand habitat type because no sites within this habitat type were classified into the Contaminant stress group regardless of the stress group classification scheme used.

2. Within Salinity Regime Scale

The second set of analytical scenarios, referred to as Within Salinity Regime scenarios, were intended to develop discriminant functions for three salinity regimes: (1) polyhaline (> 18 ppt), (2) mesohaline (5-18 ppt), and (3) tidal freshwater/oligohaline combined (< 5 ppt). For the polyhaline and mesohaline salinity regimes functions were created to discriminate: (1) between the Four Stress Groups combination, (2) between the Three Stress Groups combination (Contaminant, Combined and Unknown stress groups), (3) between the Two Stress Groups combination with a Contaminant stress group and all other stress groups combined, and 4) between the Two Stress Groups combination but without the Low DO stress group. For the tidal freshwater/oligohaline regime discriminant functions were created only for Two Stress Group combination between the Contaminant stress group and all other stress groups combined. Other scenarios for the tidal freshwater/oligohaline salinity regime were not conducted because most sites were classified into either the Contaminant or Unknown stress groups regardless of the classification scheme used.

3. Baywide Scale

The final group of scenarios were attempts to develop discriminant functions that were applicable to any habitat within Chesapeake Bay regardless of salinity regime or sediment type. Discriminant functions for these scenarios were developed to discriminate between: all four possible stress groups; the Contaminant, Unknown, and Combined stress groups; and, the Contaminant stress group and all other stress groups combined both with and without the Low DO stress group.

When conducting a discriminant analysis if the number of variables approaches or exceeds a value of *n*-1, where *n* is the total number of observations, the pooled sample variance-covariance matrix will be singular and the resulting functions developed may not reliable (Khattree and Naik 2000). For a number of the scenarios attempted, the number of variables relative to the total number of samples in the calibration data set surpassed this theoretical limitation. Despite this problem, all scenarios except those listed above were conducted in order to identify scenarios that could be potentially useful if future studies generate sufficient data to produce more reliable discriminant functions.

F. Discriminant Function Calibration and Validation

Linear discriminant function development and calibration procedures were conducted on a randomly selected subset of each classified data set comprising two thirds of the total number of observations for a given scenario. The number of discriminant functions required for the classification of observations into stress groups was dependant upon the number of stress groups being classified for each of the analytical scenarios. All discriminant analyses were conducted assuming proportional prior probabilities of group membership. If the total percentage of correctly classified observations was less than 75% for the calibration data set the discriminant functions developed were considered inapplicable for the scenario. If the percentage of correctly classified observations for any of the individual stress groups within the calibration data set was less than 70%, the discriminant function

was considered inapplicable for the scenario.

Validity of the linear discriminant functions were tested by classifying the remaining third of the data set into stress groups. Percentages of observations classified into each stress group using the functions were compared with the known percentages in each stress category of the validation data set. If the total percentage of correctly classified observations was less than 75% for a given scenario then the discriminant function was considered inapplicable for the scenario. If the percentage of correctly classified observations for any of the individual stress groups was less than 70%, the discriminant function was considered inapplicable for the scenario. If the validation data set lacked data for one or more of the stress groups, the discriminant functions developed were considered inapplicable for the scenario under consideration.

G.. Salinity Correction

Salinity is an important environmental stressor that affects the composition and distribution of benthic communities in estuaries. In an attempt to improve classification efficiency of the discriminant functions, two additional runs of the Baywide scenarios were conducted using indicator values from which the effect of natural variation due to salinity was removed. Pearson's correlation coefficient was used to identify significant relationships between salinity and all of the indicators. If a significant correlation between salinity and a given indicator was indicated (p \leq 0.01) and the absolute value of the Pearson correlation coefficient was \geq 0.50 (Paul et al. 2001), a linear regression analysis was employed to remove variance in the indicator due to salinity. For each of these indicators, a linear regression equation was developed and predicted values for each indicator were estimated based on the observed salinity. These predicted indicator values were subtracted from the observed indicator values to obtain salinity corrected residuals. These residuals were then substituted for the original values in the indicators data set and the discriminant function analysis for the Baywide scenarios were rerun.

Significant relationships with r values ≥0.50 were found for polychaete species richness, proportional abundance of polychaetes, oligochaete species richness, proportional abundance of oligochaetes, tubificid species richness, proportional abundance of tubificids, and species richness of deep deposit feeders (Appendix G). Regression relationships developed for salinity correction of these parameters are presented in Appendix H. Plots of residuals for two of these parameters, oligochaete species richness and tubificid species richness, indicated a potential polynomial relationship with salinity. Polynomial relationships for these two parameters are also provided in Appendix H.

H. Variable Reduction Approaches

Classification efficiencies of discriminant functions can be adversely affected if the number of variables is large relative to the number of observations in the data set used (Huberty 1994; Khattree and Naik 2000). For those scenarios considered applicable to a given management scenario, an attempt was made to simplify the function and improve classification efficiencies by reducing the

number of variables used. A variety of techniques are typically employed to select variables for linear discriminant function analysis; however, there is little agreement in the literature as to the validity and relative efficacy of different approaches (McLachlan1992; Huberty 1994; Khattree and Naik 2000).

For this study, two separate variable selection approaches were attempted. The first approach involved the use of a stepwise discriminant analysis using a stepwise selection method with an F-test selection criterion of 0.15 (Khattree and Naik 2000). Applicable scenarios were conducted again using this reduced variable set. The second approach involved testing for variables that were significantly different between stress groups using an ANOVA. Applicable scenarios were conducted again using only those variables which were significantly different between stress groups at $p \le 0.05$. Similar approaches have been effectively used as a variable reduction technique (Huberty 1994).

All statistical analyses were conducted using SAS/Base® and SAS/Stat® v. 8.1 statistical software. Correlation, linear discriminant function and regression analyses were conducted using the CORR, DISCRIM, and GLM procedures, respectively (SAS Institute 1990a,b). Stepwise discriminant analyses and ANOVA's were conducted using the STEPDISC and ANOVA procedures (SAS Institute 1990a,b).

III. Results

A. Description of Database

A total of 608 sampling event/location combinations were compiled from 1,450 replicate biologicalsamples collected throughout Chesapeake Bay and its tributaries. Most of these data were generated by the EPA's EMAP and MAIA Programs (Table 5). Thirteen of these sampling event/location combinations were repeat visits to the same location. A total of 268 (44%) observations were classified as either degraded or severely degraded based on the mean B-IBI values. Approximately 45% were classified as meeting benthic restoration goals and approximately 11% were classified as marginal. The mean B-IBI value across all sites was 2.76 and ranged from 1.58 at severely degraded sites to 3.61 at sites that met benthic restoration goals (Table 6). Of the observations classified as degraded or severely degraded, 12 were eliminated due to a lack of sufficient dissolved oxygen and/or contaminant concentration data leaving a reduced database of 256 observations for all subsequent analyses (Table 5).

More than 30% of the sites in the reduced database were found in high mesohaline muds while polyhaline sands had the fewest number (\approx 4%) of sites. The polyhaline mud, oligohaline and tidal freshwater habitat types had approximately equal numbers of sites. For most habitat types, the number of severely degraded sites was greater than the number of degraded sites (Table 7).

The number of contaminants exceeding the ERM concentration across all sites was 0.19 ± 0.68 (mean \pm standard deviation) with a maximum of six contaminants exceeding ERM concentrations

at a single site. The two contaminants with the highest number of observations exceeding the ERM were zinc and total DDTs which were higher than the ERM concentration at twelve and nine sites, respectively. A total of 13 contaminants including arsenic, copper, acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, benzo[a]pyrene, chrysene, dibenz[a,h]anthracene, fluoranthene, 2-methylnaphthalene, naphthalene, phenanthrene, did not exceed ERM concentrations at any of the severely degraded and degraded sites. The mean SQV quotient for severely degraded and degraded sites ranged from 0.002 to 2.87 with an average mean SQV quotient of 0.111 ± 0.204 (mean \pm standard deviation). Appendix F provides a listing of number of contaminants exceeding the ERM concentration, the mean SQG quotient, and the number missing analytes for each station date combination in the reduced database.

Based on the ERM classification scheme, nearly 75% of sites were classified into the Unknown stress group. Most of the remaining sites were classified into either Contaminant or Low D.O. effect sites (Table 8). The majority of sites in each habitat type was classified into the Unknown stress group (Table 9). The highest number of Contaminant stress group sites was found in the oligohaline habitat type while the highest number of Low D.O. stress group sites occurred in high mesohaline muds. The maximum number of Combined stress group sites was found in the low mesohaline habitat type. No sites in the high mesohaline and polyhaline sand habitat types were classified into the Contaminant or Combined stress groups. No Low D.O. sites were identified in the oligohaline and tidal freshwater habitat types.

Using the Virginian Province SQV, nearly 59% of sites were classified into the Unknown stress group (Table 8). Most of the remaining sites were classified into the contaminant stress group. The majority of sites in each habitat type was classified into the Unknown stress group except for the low mesohaline and oligohaline habitat types (Table 9). The maximum number of Contaminant stress group sites was found in the oligohaline habitat type while no Contaminant stress group sites were found in the polyhaline sand and high mesohaline sand habitat types. The maximum number of Low DO stress group sites was found in the high mesohaline mud habitat type while the oligohaline and tidal freshwater had no Low DO stress group sites. The maximum number of Combined stress group sites was found in the low mesohaline habitat type while no Combined stress group sites were found in the polyhaline sand, high mesohaline sand and oligohaline habitat types. The high mesohaline mud habitat type had the highest number of Unknown stress group sites.

Using the All Province SQV resulted in an increase in the number of Contaminant and Combined effect sites, primarily as a result of a decrease in Unknown effects sites (Table 8). The majority of sites in each habitat type was classified as Contaminant effect sites except for the high mesohaline sand and polyhaline sand habitat type where the majority of sites were classified as Unknown effect sites (Table 9). The maximum number of Contaminant effect sites was found in the high mesohaline mud habitat type while no Contaminant effect sites were found in the polyhaline sand habitat type. The maximum number of Low DO sites across habitat types was three, and three habitat types (low mesohaline, oligohaline, and tidal freshwater) had no Low DO effect sites. The maximum number of Combined effect sites was found in the low mesohaline habitat type while the polyhaline sand, high mesohaline sand and oligohaline habitats had no Combined effect sites. The high mesohaline

sand habitat type had the most Unknown effect sites.

B. Within Habitat Type Scale

None of the Within Habitat Type scenarios had a sufficient sample size for discriminant function development. The High Mesohaline Mud habitat type, when using both degraded and severely degraded sites, had the highest number of samples available for the calibration data set - 57 sites; however, 63 sites were necessary. The next highest sample number was the Low Mesohaline habitat type with 31 samples. Correct classification rates are presented below even though the sample size was inadequate.

1. All Four Stress Groups

None of these scenarios met criteria for applicability based upon correct classification rates (Table 10) due to low classification efficiencies in the validation data sets and missing values in individual stress groups. No attempts were made to reduce variable sets for these scenarios. Use of the discriminant functions developed for these scenarios is not recommended.

2. Contaminant vs All Other Stress Groups

Overall classification efficiencies for the calibration data sets for these scenarios were 100%. Overall classification efficiencies for the validation data sets exceeded 75% for several scenarios (Table 11) but only two had high (≥75%) stress group specific classification efficiencies and had more than one observation in the Contaminant stress group for the validation data sets. These two scenarios included the All Province Polyhaline Mud scenario for severely degraded and degraded sites; and the All Province High Mesohaline Mud scenario for severely degraded sites (Table 11) However, the number of variables relative to sample size exceeded the theoretical limitation for discriminant analysis and as a result the classification efficiencies obtained may be unrealistic and these discriminant function may not accurately classify new observations. Variable reduction procedures were attempted for these scenarios but resulted in lower overall classifications efficiencies for validation data sets (Table 23). Although the use of the discriminant functions for these scenarios is not recommended at present, the high classification efficiencies for the calibration data obtained for some of these scenarios suggest that the use of additional data could result in discriminant functions that might be applicable.

C. Within Salinity Regime Scale

Only the Mesohaline salinity regime had a sufficient sample size for discriminant function development. For the Polyhaline and combined Tidal Freshwater and Oligohaline regimes the maximum number of available sites for the calibration data set were 34 and 49, respectively when using both degraded and severely degraded sites. The minimum number of sites was 63. Correct classification rates are presented below even when the sample size was inadequate.

1. Polyhaline

a. All Four Stress Groups

None of these scenarios met criteria for applicability due to low classification efficiencies or missing values in some of the stress groups in the validation data set (Table 12). No attempts were made to reduce variable sets for these scenarios. Use of the discriminant functions developed for these scenarios is not recommended.

b. Three Stress Groups with no Low DO sites - Contaminant, Combined and Unknown

None of these scenarios met criteria for applicability due to low classification efficiencies or missing values in some of the stress groups in the validation data set (Table 13). No attempts were made to reduce variable sets for these scenarios. Use of the discriminant functions developed for these scenarios is not recommended.

c. Contaminant vs All Other Stress Groups

Although overall classification efficiencies for the calibration data sets were 100% and overall classification efficiencies for the validation data sets exceeded 75% for 7 out of 12 of these scenarios, classifications for individual stress groups were generally low with one exception: the All Province scenario with the Low D.O. stress group for severely degraded and degraded sites which had classification efficiencies of 80% for both stress groups (Table 14). The number of variables relative to sample size exceeded the theoretical limitation for discriminant analysis and as a result the classification efficiencies obtained may be unrealistic and the discriminant function may not accurately classify new observations. Variable reduction approaches resulted in a decrease in classification efficiency for this scenario (Table 23). The use of this discriminant function is not recommended at present; however, the high classification efficiencies obtained suggest that the use of additional data could result in a discriminant function that might be applicable to this scenario.

2. Mesohaline

a. All Four Stress Groups

Overall classification efficiencies for the calibration data sets were high ranging from 92% to nearly 99% but none of the scenarios had overall classification efficiencies above 58% for the validation data sets. As a result, none of these scenarios met criteria for applicability (Table 15). No attempts were made to reduce variable sets for these scenarios. Use of the discriminant functions developed for these scenarios is not recommended.

b. Three Stress Groups with no Low DO sites - Contaminant, Combined and Unknown

Although overall classification efficiencies for the calibration data sets for these scenarios ranged

from 93% to 100%, overall classification efficiencies for the validation data sets were low ranging from approximately 19% to a maximum of 66% (Table 16). Implementation of discriminant functions for these scenarios is not recommended.

c. Contaminant vs. All Other Stress Groups

Calibration data set overall classification efficiencies ranged from 93% to 100% for the scenarios with Low DO sites and from 96% to 100% for the scenarios without Low DO sites (Table 17). The discriminant function for the All Province SQV without Low DO sites scenario and for severely degraded sites had the highest overall classification efficiency for the validation data set (79%). Stress group specific classification efficiencies were 82% and 75% for the Contaminant and Other stress groups, respectively. Validation data set classification efficiencies within habitat type for this function were > 80% for the High Mesohaline Mud and Low Mesohaline habitat types but < 30% for the High Mesohaline Sand habitat type (Figure 1). Both variable reduction approaches for this scenario resulted in a decrease in overall and within stress group classification efficiencies (Table 23). The function for this scenario met the criteria for applicability and could be implemented.

3. Tidal Freshwater/Oligohaline

Although overall classification efficiencies for the calibration data sets for these scenarios were always at or above 90%, overall classification efficiencies or stress group specific classification efficiencies for the validation data sets were too low to meet the criteria for applicability (Table 18). Poor classification efficiencies of the validation data set were probably the result of low numbers of observations for these scenarios. Implementation of the discriminant functions developed for these scenarios is not recommended.

D. Baywide Scale

1. All Four Stress Groups

Although the calibration data set overall classification efficiency for these scenarios ranged from 78% to 96%, overall classification efficiencies for the validation data set did not meet criteria for applicability ranging from 39% to 66% (Table 19). Neither of the salinity correction approaches used resulted in classification efficiencies that met the criteria for applicability (Table 19). Implementation of discriminant functions developed for these scenarios is not recommended.

2. Three Stress Groups with no Low DO sites - Contaminant, Combined and Unknown

Overall classification efficiencies for the calibration data sets ranged from nearly 82% to nearly 98% (Table 20). However, the overall classification efficiencies for the validation data sets were less than 70% for all scenarios except two: (1) the ERM Exceedance scenario for degraded and severely degraded sites, and (2) the All Province SQV scenario for severely degraded and degraded sites. Although overall classification efficiencies were above 70% for these scenarios, classification

efficiencies for some stress groups were less than or equal to 50%. Salinity correction procedures did not improve and generally reduced the classification efficiencies of the discriminant functions for these scenarios (Table 20). Implementation of the discriminant functions developed for these scenarios is not recommended.

3. Contaminant vs. All Other Stress Groups

a. With Low DO Sites

Overall classification efficiencies for the calibration data sets ranged from 78% to 100% while overall classification efficiencies for the validation data sets ranged from approximately 49% to just over 83% (Table 21). The All Province SQV scenario for severely degraded and degraded sites had an overall classification efficiency of 75% and the best classification efficiencies for individual stress groups (82% for the Contaminant stress group and 68% for the Other stress group). Classification efficiencies within habitat types for this scenario were > 75% for five of the seven habitat types (Figure 2). Salinity correction procedures did not improve overall classification efficiencies for the calibration or validation data sets for any of the scenarios (Tables 21). Neither of the variable reduction approaches improved the classification efficiencies of this function (Table 23). The All Province SQV scenario for severely degraded and degraded sites without salinity correction met the criteria for applicability. This discriminant function could be implemented to identify potentially contaminated sites.

b. Without Low DO Sites

Overall classification efficiencies for the calibration data sets ranged from 90% to 100% while within stress group classification efficiencies were > 75% (Table 22). Although overall classification efficiencies for the validation data sets for half the scenarios were above 70%, classification efficiencies for at least one stress group were always less than 70% (Table 22). Salinity correction procedures did not improve overall classification efficiencies for the calibration or validation data sets for any of the scenarios attempt.

IV. Discussion

A. Overview of Results

Regardless of the spatial scale under consideration, discriminant functions developed for more than two separate stress groups had very poor classification efficiencies for either the validation data sets or both the calibration and validation data sets. As a result, none of discriminant functions developed to discriminate between three or four potential stress groups should be implemented. Poor classification efficiencies for these scenarios were due primarily to low numbers of observations within individual stress groups.

The only Within Salinity Regime discriminant function that met criteria for applicability was for the

Mesohaline salinity regime, using two stress groups and severely degraded sites only (excluding Low DO sites) and using the All Province SQV contaminant classification scheme (Table 17). Implementation of this discriminant function is not recommended until functions for the other habitat type combinations can be successfully validated.

The discriminant function for one Baywide scenario met the criteria for use in identifying potential sources of stress: the Contaminant versus Others stress groups (with Low DO sites) using the All Province SQV contaminant criterion for severely degraded and degraded sites without a salinity correction. This particular function is capable of discriminating contaminated sites from sites affected by all other potential sources of stress in any of the seven habitat types.

B. Usage Constraints

The characteristics of the data sets used in this study and statistical techniques employed put certain constraints on how the tool should be used and how results of subsequent classification analyses should be interpreted. The diagnostic tool developed provides a means to assign new observations to one of two groups of potential sources of stress and assign a probability of group membership to each new observation. The discriminant function coefficients used to make these assignments were developed based on the distributional, variance-covariance and correlation structure of the predictor variables in calibration data set. In effect, new observations are assigned to stress groups based on their similarity to observations in the two stress categories in the calibration data set.

The calibration data set was taken from benthic biological data sets collected under a set of specific conditions which affects the underlying data structure of the predicator variables. As a result, new observations can be classified into stress categories only if they meet these conditions. Since the functions were developed using samples collected within Chesapeake Bay and its tributaries, samples collected outside of these geographical boundaries should not be classified using these functions. Since the functions were developed using samples collected with a Young grab and different sampling gear have inherent properties that affect estimates of various biological variables (Word 1975,1976; Ewing et al. 1988), samples collected using any gear type other than a Young grab cannot be classified using these functions. All observations used in this study were collected during the B-IBI index period (July 15 through September 30). No attempt should be made to classify into stress groups new observations that are not collected during the index period. The calibration data set contained only observations that had been previously classified as either degraded or severely degraded using the Chesapeake Bay Program Index of Biotic Integrity. No attempt should be made to classify into stress groups new observations that have not been previously classified as degraded or severely degraded by the B-IBI.

It is possible that characteristics of Contaminant stress group in the calibration data do not reflect the characteristics of all of the potentially contaminated sedimentary environments found in Chesapeake Bay. The number of contaminants used in contaminant classification schemes was limited to a total of 8 metals and 16 organic compounds. As a result, the Contaminant stress group for the calibration data sets may not include some samples that were, in fact, affected by

anthropogenic contaminants not included in the list used by this study. Therefore, it is possible that a new observation could be classified into the Other category despite the presence of anthropogenic sediment contaminants. Assigning group membership to new observations using discriminant function is always accompanied by the risk of mis-classifying the new observations. For the case of the diagnostic tools developed for this study, the classification efficiencies of the validation data sets can be used to estimate the risk of mis-classifying new observations. For the Baywide diagnostic tool, the risk of mis-classifying a new observation would be approximately 25%. Because of these limitations the diagnostic tool developed cannot be used to definitively assign new observations to the contaminant stress group or not without independent and direct measurement of sediment contaminant concentrations. The tool developed should be used exclusively as a screening tool to identify sites or regions with a high probability of sediment contamination that should be targeted for further study. Posterior probabilities of group membership could be used to prioritize sites with respect to the need for conducting additional studies to identify and quantify sediment contaminants. Sites with the highest posterior probability of group membership in the Contaminant stress group would warrant the highest priority for additional investigations.

C. Technical Approaches to Implementation

From a technical standpoint, discriminant functions could be implemented using a variety of techniques. The simplest method would be to create a spreadsheet containing formulae to multiply the linear discriminant coefficients with values for each of the bioindicators for each observation being classified. The resulting transformed values would be summed together to produce the discriminant score for each observation. These discriminant scores would then be compared to the cutoff value for the function. The primary advantage to this approach is that users would not be required to have specialized computer programming skills to use the functions. The disadvantage is that entry of formulae and bioindicators into spreadsheets would be tedious, labor intensive and prone to data entry errors. In addition, this approach does not provide posterior probabilities of stress group membership for new observations. Table 24 provides the linear discriminant coefficients for the function recommended for implementation along with the cutoff values used to determine stress group membership. Values below the cutoff values are classified into the Contaminant stress group while values above the cutoff are classified into the Other stress group for the Baywide function.

The use of SAS statistical programming language would appear to be the most efficient means to implement the diagnostic tool provided the user is familiar with this application. To classify new sites into stress groups using SAS would require the user to: (1) have access to copies of the original calibration data sets used for this study, (2) create a SAS format data set containing the new observations with the same format as that of the calibration data sets, and (3) be familiar with and able to interpret output from the SAS DISCRIM procedure. A copy of the calibration data set along with SAS programs for conducting a discriminant analysis are provided on the diskette attached to this report to assist users in implementing the diagnostic tools. Using SAS programs would combine relative ease of use in combination with the detailed output provided by this statistical package.

Other programming languages such as Visual Basic or C⁺⁺ could be used to create programs for

calculating discriminant scores and comparing them to the cutoff values and for calculating posterior probabilities. Such programs could be written to perform the same operations as SAS programs but the user would be required to have not only computer programming language skills but would need an extensive knowledge of multivariate statistics. A typical user would find this approach time consuming and difficult to implement.

D. Recommendations

Prior to implementation, it is recommended that operational effectiveness of the diagnostic tools be further tested using additional validation data sets. A variety of benthic community data sets exist that do not include sediment contaminant data and, therefore, could not be included in our calibration and validation data sets. For example, since 1996, the entire tidal Chesapeake Bay has been sampled using a stratified random procedure (Llansó et al. 2002). The Bay is divided into ten strata and within each stratum 25 random locations are sampled for a total of 250 random locations each year. Sites with degraded benthic community condition could be putatively placed into stress categories for further validation. In addition, this large random data set could be reviewed to generate additional data to (1) attempt to develop discriminant functions including additional stress groups, e.g., a Low DO stress group and (2) possibly provide an adequate sample size for discriminant function development for some of the spatial scales below the Baywide scale. Other data sets from areas known to have sediment contaminant problems but not meeting our data inclusion criteria could provide additional validation data sets. For example, Dauer and Llansó (2002) present data from 125 randomly selected locations sampled for benthic community condition in 1999 in the Elizabeth River watershed.

All diagnostic tools implemented should be periodically "re-calibrated" as new benthic biological data sets with associated contaminants data become available. Two of the Within Habitat Type and two of the Within Salinity Regime functions showed promise and efforts to update and validate these functions should be attempted if additional data become available. If and when the diagnostic tools described are implemented for regular use by the Chesapeake Bay management community, they should be employed with all usage constraints as described above.

VI. Literature Cited

Aller, R.C., 1978. Experimental studies on changes produced by deposit feeders on pore water, sediment and overlying water chemistry. Amer. J. Sci. 278:1185-1234.

Aller, R.C., 1980. Relationships of tube-dwelling benthos with sediment and overlying water chemistry. pp. 285-308, In Marine Benthic Dynamics, K.R. Tenore and B.C. Coull, eds., University of South Carolina Press, Columbia SC.

Beukema, J.J., 1991. Changes in composition of bottom fauna of a tidal flat area during a period of eutrophication. Mar. Biol. 111:293-301.

Bilyard, G.R., 1987. The value of benthic infauna in marine pollution monitoring studies. Mar. Poll. Bull. 18:581-585.

Botton, M.L., 1984. Effects of laughing gull and shorebird predation on the intertidal fauna at Cape May, New Jersey. Estuar. Coast. Shelf Sci. 18:209-220.

Boesch, D.E., 1972. Species diversity of marine macrobenthos in the Virginia area. Ches. Sci. 13:206-211

Brown, J.R., R.J. Gowen and D.S. McClusky, 1987. The affect of salmon farming on the benthos of a Scottish sea loch. J. Exp. Mar. Biol. Ecol. 109:39-51.

Christman, C.S. and D.M. Dauer 2002. Development of a diagnostic tool to determine the cause of benthic community degradation in the Chesapeake Bay. Environmental Monitoring and Assessment. IN PRESS.

Cleorn, J.E., 1982. Does the benthos control phytoplankton biomass in south San Francisco bay? Mar Ecol. Prog. Ser., 9:191-202.

Cohen, R., P. Dresler, E. Philips, and R. Cory, 1984. The effect of the Asiatic clam *Corbicula fluminea*, on phytoplankton of the Potomac River, Maryland. Limnol. Oceanogr., 29:170-180

Dauer, D. M., 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Poll. Bull. 26:249-257.

Dauer, D.M., 1997. Dynamics of an estuarine ecosystem: Long-term trends in the macrobenthic communities of the Chesapeake Bay, USA (1985-1993), Oceanologica Acta, 20: 291-298.

Dauer, D.M. 1999. Baywide benthic community condition based upon 1997 random probability based sampling and relationships between benthic community condition, water quality, sediment quality, nutrient loads and land use patterns in Chesapeake Bay. Final report to the Virginia Department of Environmental Quality. 18 pages plus Appendix.

Dauer, D. M. and R. W. Alden, 1995. Long-term trends in the macrobenthos and water quality of the lower Chesapeake Bay (1985-1991). Mar. Poll. Bull. 30:840-850.

Dauer, D.M., R.M. Ewing, G.H. Tourtellotte, W.T. Harlan, J.W. Sourbeer, and H. R. Barker Jr. 1982. Predation pressure, resource limitation and the structure of benthic infaunal communities. Internationale Revue der gesamten Hydrobiologie 67: 477-489.

Dauer, D.M., M. F. Lane, H.G. Marshall, K.E. Carpenter and R.J. Diaz. 1999. Status and trends in water quality and living resources in the Virginia Chesapeake Bay: 1985-1998. Final report to the Virginia Department of Environmental Quality. 65 pages.

Dauer, D.M. and R. J. Llansó. 2002. Spatial scales and probability based sampling in determining levels of benthic community degradation in the Chesapeake Bay. Environmental Monitoring and Assessment. In Press.

Dauer, D.M., M.W. Luckenbach, M.W. and A.J. Rodi, Jr., 1993. Abundance biomass comparison (ABC method): effects of an estuarine gradient, anoxic/hypoxic events and contaminated sediments, Marine Biology, 116: 507-518.

Dauer, D.M., H.G. Marshall, K.E. Carpenter, M. F. Lane, R.W. Alden, III, K.K. Nesius and L.W. Haas. 1998. Virginia Chesapeake Bay water quality and living resources monitoring programs: Executive Report, 1985-1996. Final report to the Virginia Department of Environmental Quality. 28 pages.

Dauer, D.M., J.A. Ranasinghe, and Rodi, Jr., 1992. Effects of low dissolved oxygen levels on the macrobenthos of the lower Chesapeake Bay, Estuaries, 15: 384-391.

Dauer, D.M. and A.J. Rodi, Jr. 1999. Baywide benthic community condition based upon 1998 random probability based sampling. Final report to the Virginia Department of Environmental Quality. 126 pp.

Dauer, D.M. and A.J. Rodi, Jr. 2001. Baywide benthic community condition based upon 1999 random probability based sampling. Final report to the Virginia Department of Environmental Quality. 154 pp.

Dauer, D.M, Weisberg S.B. and J.A. Ranasinghe, 2000. Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries, 23:80-96.

Davis, W.S. and T.P. Simon, 1995. Biological Assessment and Criteria, tools for water resource planning and decision making. Lewis Publishers, New York, NY. 415 pp.

Engle, V.D., J.K. Summers, and G.R. Gaston, 1994. A benthic index of environmental condition of Gulf of Mexico estuaries. Estuaries 17:372-384.

Engle, V.D. and J.K. Summers, 1999. Refinement, validation, and application of a benthic condition index for the northern Gulf of Mexico. Estuaries 22:624-635.

Ewing R.M., J.A. Ranasinghe and D.M. Dauer. 1988. Comparison of five benthic sampling devices. Applied Marine Research Laboratory Technical Report. Report to the Virginia State Water Control Board 84 pp.

Gaston, G.R. and J.C. Young, 1992. Effects of contaminants of macrobenthiccommunities in the upper Calcasieu Estuary, Louisiana. Bull. Environ. Contam. Toxicol. 49:922-928.

Flint, R.W. and D. Kamykowski, 1978. Benthic nutrient regeneration in south Texas coastal waters. Estuar. Coast. Shelf Sci. 18:221-230.

Holland, A., N. Mountford, M. Heigel, D. Cargo, and J. Mihursky, 1980. Influence of predation on infaunal abundance in the upper Chesapeake Bay. Mar. Biol., 57:221-235.

Huberty, C.J., 1994. Applied discriminant analysis. Wiley-Interscience. New York, N.Y. pp 446.

Hyland, J.L., W.L. Balthis, V.D. Engle, E.R. Long, J.F. Paul, J.K. Summers, and R.F. Van Dolah. In Press, Incidence of stress in benthic communities along the U.S. Atlantic and Gulf of Mexico coasts within different ranges of sediment contamination from chemical mixtures. Environmental Monitoring and Assessment Special Issue on EMAP Symposium 2001: Coastal Monitoring Through Partnerships, April 24-27, 2001, Pensacola, FL.

Johnson, R.A. and D.W. Wichern, 1998. Applied multivariate statistical analysis. 4th Edition. Prentice Hall, Upper Saddle River, N.J. 816 pp.

Karr, J.R. and E.W. Chu, 1999. Restoring life in running waters. Island Press Washington D.C. 206 pp.

Kachigan, S.K., 1991. Multivariate statistical analysis. 2nd Edition. Radius Press. New York, N.Y. 303 pp.

Khattree, R. and D.N. Naik, 2000. Multivariate data reduction and discrimination with SAS software. SAS Institute Inc. Cary, N.C. 574 pp.

Llansó, R.J., D.M. Dauer, J.H. Vølstad, and L.S. Scott. 2002. Application of the Benthic Index of Biotic Integrity to environmental monitoring in Chesapeake Bay. Environmental Monitoring and Assessment. In Press.

Llansó, R.J., In Review. An estuarine benthic index of biological integrity for the Mid-Atlantic region of the United States. II. Index development. To be submitted to Estuaries.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D.Clader, 1995. Incidence of adverse biological effects within ranges of chemical concentration in marine and estuarine sediments. Environ. Man. 19:81-95.

Long, E.R., and L.G. Morgan, 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52, 175 pages, Two appendices. United States Department of Commerce, National Oceanic and Atmospheric Administration, Seattle, Washington.

McGee, B.L., D.J. Fisher, J. Ashley, and D. Velinsky, 2001. Using the sediment quality triad to chaaracterize toxic conditions in Chesapeake Bay (199). Report to the U.S. Environmental Protection Agency. IN PRESS.

McLachlan, G.J. 1992. Discriminant analysis and statistical pattern recognition. Wiley-Interscience, New York, N.Y. 526 pp.

Nichols F., 1985. Increased benthic grazing: An alternative explanation for low phytoplankton biomass in Northern San Francisco Bay during the 1975-1977 drought. Estuar. Coast. Shelf Sci. 21:379-388

Officer, C.B., A.J. Smayda and R. Mann, 1982. Benthic filter feeding: A natural eutrophication control. Mar. Ecol. Prog. Ser., 9:203-210.

Paul, J.F., K.J.Scott, D.E. Campbell, J.H. Gentile, C.S. Strobel, R.M. Valente, S.B. Weisberg, A.F. Holland, J.A. Ranasinghe, 2001. Developing and applying a benthic index of estuarine condition for the Virginian Biogeographic Province. Ecological Indicators. 1:83-99.

Pearson, T. H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16:229-311.

Quammen, M.L., 1984. Predation by shorebirds, fish, and crabs on invertebrates in intertidal mudflats: An experimental test. Ecology, 65:529-537.

Reish, D., 1973. The use of benthic animals in monitoring the marine environment. J. Environ. Plan. Poll. Cont. 1:32-38.

Rhoads, D.C., 1973. The influence of deposit-feeding benthos on water turbidity in nutrient cycling. Amer. J. Sci. 271:1-22.

Rhoads, D.C. and D.K. Young, 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28:150-178.

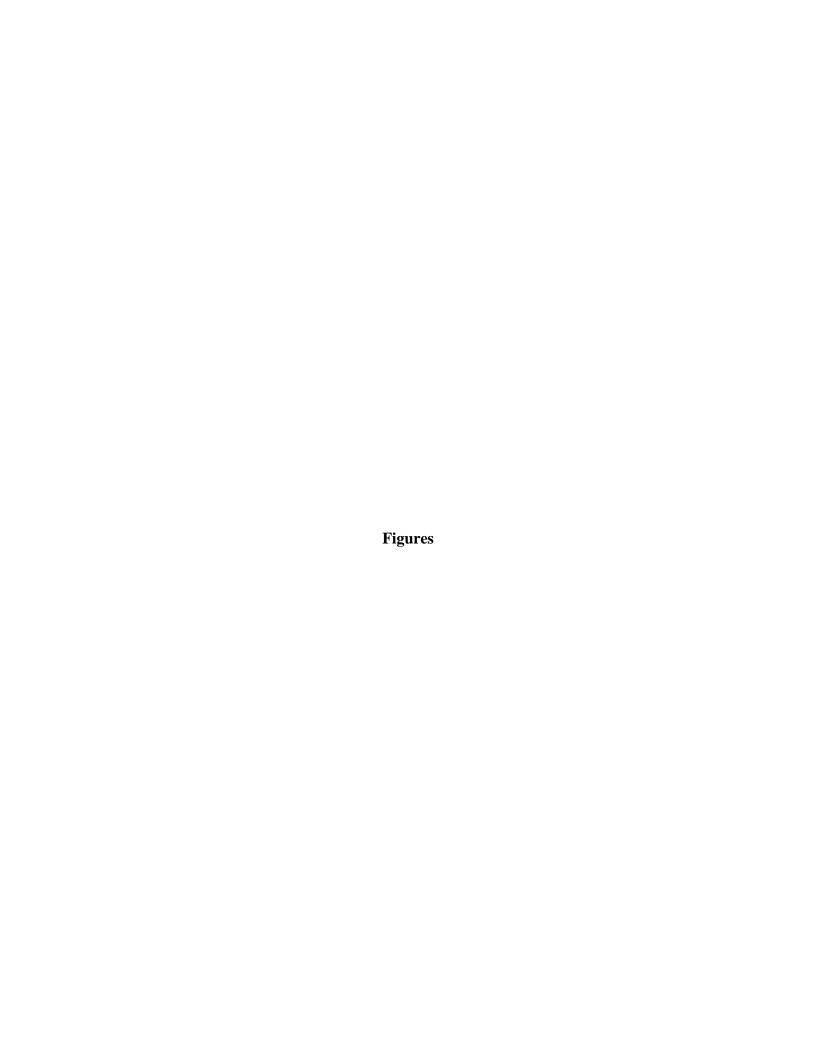
Rowe, G.T., C.H. Clifford, K.L. Smith and P.L. Hamilton, 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255:215-217.

SAS Institute Inc., 1990a. SAS/STAT® User's Guide, Volume 1, .ACECLUS-FREQ. SAS Institute Inc., Cary N.C. pp. 890.

SAS Institute Inc., 1990b. SAS/STAT® User's Guide Volume 2 GLM-VARCOMP. SAS Institute Inc., Cary N.C. pp. 1686.

Versar Inc., 2001. Chesapeake Bay Water Quality Monitoring Program, benthic monitoring component quality assurance project plan: 2001-2002. Versar Inc., Columbia MD. Report to the Maryland Department of Natural Resources Tidewater Resource Assessment. Annapolis MD.

Virnstein, R.W., 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology, 58:199-217.


Virnstein, R.W., 1979. Predation on estuarine infauna: Response patterns of component species. Estuaries 2:69-86.

Word, J.Q., 1975. A comparison of grab samplers. California Coastal Water Research Project 1975 Annual Report. pp. 63-66.

Word, J.Q., 1979. An evaluation of benthic invertebrate sampling devices for investigating feeding habits of fish. Proceedings of the 1st Pacific Northwest Technical Workshop. pp. 43-55.

Weisberg, S.B., J.A. Ranasinghe, D.M. Dauer, L.C. Schaffner, R.J. Diaz and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries, 20: 149-158.

Zeitzschel, B., 1980. Sediment-water interactions in nutrient dynamics. pp. 195-218. In Marine Benthic Dynamics, K.R. Tenore and B.C. Coull, eds., University of South Carolina Press, Columbia SC.

All Province Contaminant Classification Scheme Severely Degraded Mesohaline Sites Only Contaminant vs. Others - Without Low D.O. Sites

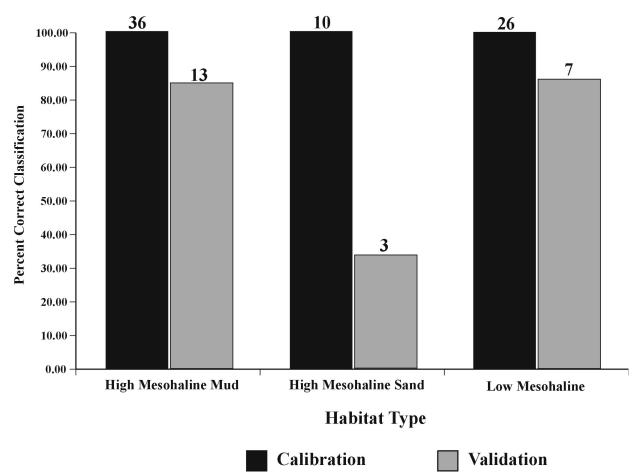


Figure 1. Discriminant function classification efficiencies for individual habitat types for classifying Mesohaline severely degraded sites (excluding Low D.O. sites) into the Contaminant and Other stress groups. Numbers above the bars indicate the number of observations within each habitat type.

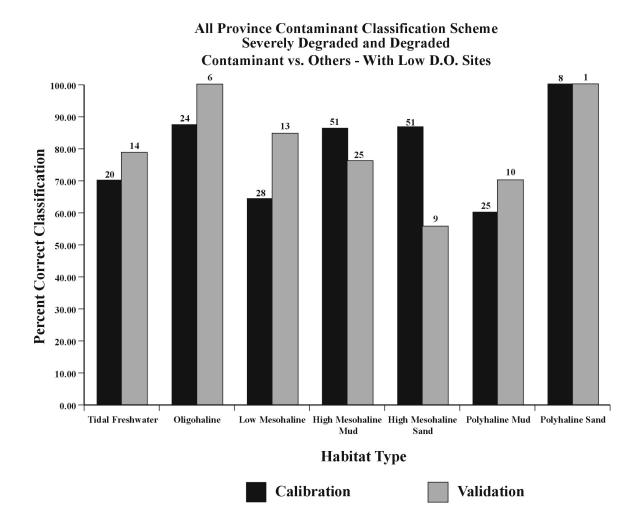
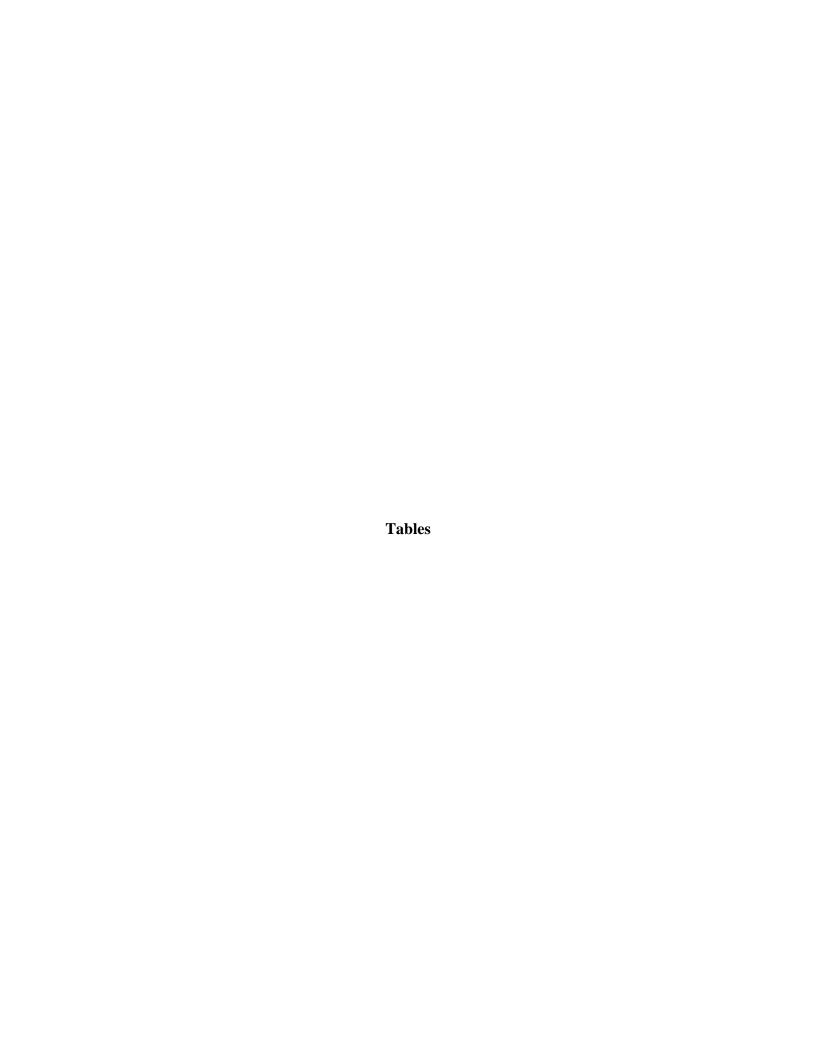



Figure 2. Discriminant function classification efficiencies for individual habitat types for the Baywide discriminant function for classifying severely degraded and degraded sites (including Low D.O. sites) into the Contaminant and Other stress groups. Numbers above the bars indicate the number of observations within each habitat type.

Table 1 Data Aggregation schemes used in analyses. For definition of habitat types see Table 2. Stress categories are defined in the text.

A. Spatial Scale

Within Habitat

Tidal Freshwater

Oligohaline

Low Mesohaline

High Mesohaline Sand

High Mesohaline Mud

Polyhaline Sand

Polyhaline Mud

Within Salinity Regime

Tidal Freshwater/Oligohaline

Mesohaline

Polyhaline

Baywide

B. Stress Categories

Four Stress Groups

Contaminant

Low DO

Combined

Unknown

Three Stress Groups

Contaminant

Combined

Unknown

Two Stress Groups

Contaminant

Others

C. Contaminant Stress Group Criterion

ERM Exceedance

Virginian Province ERM quotient

All Province ERM quotient

D. Level of Benthic Community Degradation

Severely degraded and degraded B-IBI < 2.6Severely degraded B-IBI ≤ 2.0

Table 2. Candidate metrics used for analytical tool development. An asterisk indicates that a given metric for the category listed was included in the analytical tools.

		Relative	Species		
Abundance	Richness			Dominance	Biomass
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	-	-
*	*	*	-	_	-
*	*	*	-	-	=
*	*	*	_	-	_
*	*	*	-	_	-
*	*	*	_	-	_
*	*	*	_	-	_
*	*	*	-	-	-
*	*	_	*	*	_
	*	*	*	*	_
-	-	-	-	-	*
*	*	*	_	_	_
	*	*	_	_	_
*	*	*	_	_	_
	* * * * * * * * * * * * * * * * * * * *			Abundance Richness Abundance Diversity * * * - * * * - * * * - * * * - * * * - * * * - * * * - * * * - * * * - * * * - * * * * * * * - * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * <	Abundance Richness Abundance Diversity Dominance * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * - - * * * * * * * * * * * * * * * * * *

Table 3. Habitat types for the Chesapeake Bay B-IBI as defined by Weisberg et al. (1997). (N/A: Not applicable)

	Bottom Salinity	Silt/Clay (<63µ)
Habitat	(ppt)	Content by Weight (%)
Tidal Freshwater	0-0.5	N/A
Oligohaline	0.5-5	N/A
Low Mesohaline	5-12	N/A
High Mesohaline Sand	12-18	0-40
High Mesohaline Mud	12-18	> 40
Polyhaline Sand	> 18	0-40
Polyhaline Mud	> 18	> 40

Table 4. ERM guidelines for 24 trace metals (ppm dry wt) and organic compounds (ppb, dry wt) as defined from Long et al. (1995).

	Effects Range Median Concentration
TD N. 4. I	
Trace Metals	5 0
Arsenic	70
Cadmium	9.6
Chromium	370
Copper	270
Lead	218
Mercury	0.71
Silver	3.7
Zinc	410
Organic Compounds	
Acenaphthene	500
Acenaphthylene	640
Anthracene	1100
Benzo[a]anthracene	1600
Benzo[a]pyrene	1600
Chrysene	2800
Dibenz[a,h]anthracene	260
Fluoranthene	5100
Fluorene	540
2-Methylnaphthalene	670
Naphthalene	2100
Phenanthrene	1500
Pyrene	2600
Total PCBs	180
4,4'-DDE	27
Total DDTs	46.1

Table 5. Number of sampling location/date combinations for each monitoring program within Chesapeake Bay and the number of location date combinations retained for discriminant analysis. An asterisk indicates that contaminants data were collected separately as part of the Ambient Toxicity Program.

Monitoring Program	Years of Collection	Sampling Locations	Samples
EMAP Virginian Province	1990-93	290	109
Mid-Atlantic Integrated Assessment Program	1997-98	121	67
CBP Long-term Benthic Monitoring Program (Maryland)*	1997	48	17
Tidal Freshwater Goals Program	1996	47	22
CBP Long-term Benthic Monitoring Program (Virginia)*	1997	46	17
Ambient Toxicity Program (Maryland)	1999	36	11
Ambient Toxicity Program (Virginia)	1999	20	13
	·	Total=608	Total=256

Table 6. Frequency and percentage of sites and mean B-IBI for sites within each status classification category. Values in parentheses represent one standard deviation in the B-IBI within each classification category.

1	Number of		
Status	Sites	% of Sites	Mean B-IBI
Meets Goals	272	44.66	3.6(0.5)
Marginal	69	11.33	2.8(0.1)
Degraded	110	18.06	2.4(0.1)
Severely Degraded	158	25.94	1.6(0.4)
Overall	609		2.8(1.0)

Table 7. Frequency of sites classified as severely degraded and degraded for each habitat type.

	To	otal	Severely	Degraded	Deg	raded
Habitat	Number	Percentage	Number	Percentage	Number	Percentage
Polyhaline Mud	35	13.67	19	7.42	16	6.25
Polyhaline Sand	9	3.52	2	0.78	7	2.73
High Mesohaline Mud	78	30.47	51	19.92	27	10.55
High Mesohaline Sand	26	10.16	16	6.25	10	3.91
Low Mesohaline	42	16.41	33	12.89	9	3.52
Oligohaline	32	12.50	15	5.86	17	6.64
Tidal Freshwater	34	13.28	17	6.64	17	6.64

Table 8. Frequency of sites classified as severely degraded and degraded for each stress group.

			VA Province		All Province	
	ERM Sediment		Mean SQG Quotient		Mean SQG Quotient	
	Contai	Contaminant		Sediment Contaminant		ontaminant
	Classif	ication	Classification		Classification	
Stress Group	Number	Percentage	Number	Percentage	Number	Percentage
Contaminant	23	8.98	63	24.61	140	54.69
Low D.O.	34	13.28	24	9.38	10	3.91
Combined	9	3.52	19	7.42	33	12.89
Unknown	190	74.22	150	58.59	73	28.52

Table 9. Frequency of sites classified as severely degraded and degraded within each habitat and effect type for each of the sediment contaminant classification schemes.

						VA Province			All Province	
			ERM Sedimer	nt	Me	ean SQG Quot	ient	Mean S	QG Quotient	Sediment
		Conta	minant Classif	fication	Sediment C	Contaminant C	lassification	Conta	minant Classit	fication
			Severely			Severely			Severely	
Habitat	Stress Group	Total	Degraded	Degraded	Total	Degraded	Degraded	Total	Degraded	Degraded
High Mesohaline Mud	Combined	2	2	0	4	3	1	12	11	1
High Mesohaline Mud	Contaminant	3	2	1	14	9	5	46	31	15
High Mesohaline Mud	Low D.O.	12	11	1	10	10	0	2	2	0
High Mesohaline Mud	Unknown	61	36	25	50	29	21	18	7	11
High Mesohaline Sand	Combined	0	0	0	0	0	0	0	0	0
High Mesohaline Sand	Contaminant	0	0	0	0	0	0	3	3	0
High Mesohaline Sand	Low D.O.	3	3	0	3	3	0	3	3	0
High Mesohaline Sand	Unknown	23	13	10	23	13	10	20	10	10
Low Mesohaline	Combined	6	5	1	14	13	1	15	14	1
Low Mesohaline	Contaminant	5	5	0	14	13	1	20	17	3
Low Mesohaline	Low D.O.	9	9	0	1	1	0	0	0	0
Low Mesohaline	Unknown	22	14	8	13	6	7	7	2	5
Oligohaline	Combined	0	0	0	0	0	0	0	0	0
Oligohaline	Contaminant	8	5	3	16	9	7	26	14	12
Oligohaline	Low D.O.	0	0	0	0	0	0	0	0	0
Oligohaline	Unknown	24	10	14	16	6	10	6	1	5
Polyhaline Mud	Combined	0	0	0	0	0	0	5	5	0
Polyhaline Mud	Contaminant	3	1	2	5	2	3	21	11	10
Polyhaline Mud	Low D.O.	7	7	0	7	7	0	2	2	0
Polyhaline Mud	Unknown	25	11	14	23	10	13	7	1	6
Polyhaline Sand	Combined	0	0	0	0	0	0	0	0	0
Polyhaline Sand	Contaminant	0	0	0	0	0	0	0	0	0
Polyhaline Sand	Low D.O.	3	2	1	3	2	1	3	2	1
Polyhaline Sand	Unknown	6	0	6	6	0	6	6	0	6
Tidal Freshwater	Combined	1	1	0	1	1	0	1	1	0
Tidal Freshwater	Contaminant	4	3	1	14	6	8	24	10	14
Tidal Freshwater	Low D.O.	0	0	0	0	0	0	0	0	0
Tidal Freshwater	Unknown	29	13	16	19	10	9	9	6	3

Table 10. Classification efficiencies of linear discriminant functions developed for the Within Habitat Type scenarios for all available stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

	Polyhaline Muc	I Calibration I	Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	100.00(2)	100.00(5)	100.00(21)	100.00
ERM Exceedance	Severely Degraded Only	-	100.00(1)	100.00(5)	100.00(9)	100.00
VA Province	Severely Degraded and Degraded	-	100.00(4)	100.00(5)	100.00(19)	100.00
VA Province	Severely Degraded Only	-	100.00(1)	100.00(5)	100.00(9)	100.00
All Province	Severely Degraded and Degraded	100.00(3)	100.00(18)	100.00(2)	100.00(5)	100.00
All Province	Severely Degraded Only	100.00(4)	100.00(9)	100.00(1)	100.00(1)	100.00
	Polyhaline Muo	d Validation I	Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	0.00(1)	100.00(2)	25.00(4)	36.61
ERM Exceedance	Severely Degraded Only	-	-	100.00(2)	50.00(2)	67.86
VA Province	Severely Degraded and Degraded	-	0.00(1)	100.00(2)	0.00(4)	17.86
VA Province	Severely Degraded Only	-	0.00(1)	100.00(2)	100.00(1)	93.33
All Province	Severely Degraded and Degraded	-	66.67(3)	-	0.00(2)	57.69
All Province	Severely Degraded Only	0.00(1)	50.00(2)	100.00(1)	-	39.29
	High Mesohaline S	and Calibration	on Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	-	100.00(3)	100.00(16)	100.00
ERM Exceedance	Severely Degraded Only	-	-	100.00(2)	100.00(12)	100.00
VA Province	Severely Degraded and Degraded	-	-	100.00(3)	100.00(16)	100.00
VA Province	Severely Degraded Only	-	-	100.00(2)	100.00(12)	100.00
All Province	Severely Degraded and Degraded	-	100.00(3)	100.00(3)	100.00(13)	100.00
All Province	Severely Degraded Only	-	100.00(3)	100.00(2)	100.00(9)	100.00
	High Mesohaline S	Sand Validation	on Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	-	-	100.00(6)	100.00
ERM Exceedance	Severely Degraded Only	-	-	100.00(1)	100.00(1)	100.00
VA Province	Severely Degraded and Degraded	-	-	-	100.00(5)	100.00
VA Province	Severely Degraded Only	-	-	100.00(1)	100.00(1)	100.00
All Province	Severely Degraded and Degraded	-	-	_	100.00(5)	100.00
All Province	Severely Degraded Only	-	-	100.00(1)	100.00(1)	100.00

Table 10. Continued.

	High Mesohaline I	Mud Calibratio	on Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(1)	100.00(2)	62.50(8)	100.00(46)	94.74
ERM Exceedance	Severely Degraded Only	100.00(2)	100.00(2)	57.14(7)	100.00(28)	92.71
VA Province	Severely Degraded and Degraded	50.00(2)	100.00(12)	100.00(7)	100.00(36)	98.25
VA Province	Severely Degraded Only	33.33(3)	100.00(9)	100.00(6)	100.00(21)	94.87
All Province	Severely Degraded and Degraded	100.00(7)	100.00(37)	100.00(2)	100.00(11)	100.00
All Province	Severely Degraded Only	100.00(7)	100.00(23)	100.00(2)	100.00(7)	100.00
	High Mesohaline	Mud Validatio	n Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(1)	0.00(1)	0.00(4)	46.15(13)	39.00
ERM Exceedance	Severely Degraded Only	-	-	25.00(4)	75.00(8)	65.00
VA Province	Severely Degraded and Degraded	0.00(2)	0.00(2)	66.67(3)	16.67(12)	18.71
VA Province	Severely Degraded Only	-	-	75.00(4)	75.00(8)	75.00
All Province	Severely Degraded and Degraded	60.00(5)	11.11(9)	-	0.00(5)	15.11
All Province	Severely Degraded Only	50.00(4)	75.00(8)	-	-	69.17
	Low Mesohalin	e Calibration 1	Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	80.00(5)	100.00(2)	100.00(8)	100.00(16)	96.77
ERM Exceedance	Severely Degraded Only	50.00(2)	100.00(3)	100.00(9)	100.00(12)	96.15
VA Province	Severely Degraded and Degraded	100.00(12)	100.00(9)	100.00(1)	100.00(9)	100.00
VA Province	Severely Degraded Only	100.00(10)	100.00(9)	100.00(1)	100.00(6)	100.00
All Province	Severely Degraded and Degraded	100.00(13)	100.00(13)	-	100.00(5)	100.00
All Province	Severely Degraded Only	100.00(11)	100.00(13)	-	100.00(2)	100.00
	Low Mesohalin	e Validation I	Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(1)	0.00(3)	0.00(1)	20.00(5)	10.32
ERM Exceedance	Severely Degraded Only	0.00(3)	0.00(2)	-	50.00(2)	35.29
VA Province	Severely Degraded and Degraded	50.00(2)	0.00(5)	-	66.67(3)	40.00
VA Province	Severely Degraded Only	66.67(3)	0.00(4)	-	-	35.09
All Province	Severely Degraded and degraded	50.00(2)	42.86(7)	-	100.00(1)	55.07
All Province	Severely Degraded Only	66.67(3)	25.00(4)	-	-	44.10

Table 10. Continued.

	Oligohaline C	Calibration Da	ta Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	100.00(6)	-	100.00(19)	100.00
ERM Exceedance	Severely Degraded Only	-	100.00(4)	-	100.00(7)	100.00
VA Province	Severely Degraded and Degraded	-	100.00(10)	-	100.00(15)	100.00
VA Province	Severely Degraded Only	-	100.00(5)	-	100.00(6)	100.00
All Province	Severely Degraded and Degraded	-	100.00(19)	-	100.00(6)	100.00
All Province	Severely Degraded Only	-	100.00(10)	-	100.00(1)	100.00
	Oligohaline V	Validation Dat	ta Set			
Classification Scheme		Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	100.00(2)	-	66.67(3)	74.67
ERM Exceedance	Severely Degraded Only	-	0.00(1)	-	0.00(1)	0.00
VA Province	Severely Degraded and Degraded	-	50.00(4)	-	100.00(1)	80.00
VA Province	Severely Degraded Only	-	50.00(2)	-	-	50.00
All Province	Severely Degraded and Degraded	-	100.00(5)	-	-	100.00
All Province	Severely Degraded Only	-	50.00(2)	-	-	50.00
	Tidal Freshwate	r Calibration 1	Data Set			
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(1)	100.00(3)	-	100.00(23)	100.00
ERM Exceedance	Severely Degraded Only	100.00(1)	100.00(1)	-	100.00(12)	100.00
VA Province	Severely Degraded and Degraded	100.00(1)	100.00(10)	-	100.00(16)	100.00
VA Province	Severely Degraded Only	100.00(1)	100.00(5)	-	100.00(8)	100.00
All Province	Severely Degraded and Degraded	100.00(1)	100.00(19)	-	100.00(7)	100.00
All Province	Severely Degraded Only	100.00(1)	100.00(8)	-	100.00(5)	100.00
	Tidal Freshwate	r Validation I	Data Set			-
Classification Scheme	Data Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	0.00(1)	-	66.67(6)	58.97
ERM Exceedance	Severely Degraded Only	-	50.00(2)	-	100.00(1)	96.15
VA Province	Severely Degraded and Degraded	-	25.00(4)	-	33.33(3)	30.13
VA Province	Severely Degraded Only	-	0.00(1)	-	50.00(2)	30.77
All Province	Severely Degraded and Degraded	-	0.00(5)	-	0.00(2)	0.00
All Province	Severely Degraded Only	-	0.00(2)	-	0.00(1)	0.00

Table 11. Classification efficiencies of linear discriminant functions developed for Within Habitat Type scenarios for discriminating between the Contaminant and Other stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

	Polyhaline Mud Calibratio	n Data Set		
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(2)	100.00(26)	100.00
ERM Exceedance	Severely Degraded	100.00(1)	100.00(14)	100.00
VA Province	Severely Degraded and Degraded	100.00(4)	100.00(24)	100.00
VA Province	Severely Degraded	100.00(1)	100.00(14)	100.00
All Province	Severely Degraded and Degraded	100.00(18)	100.00(10)	100.00
All Province	Severely Degraded	100.00(9)	100.00(6)	100.00
	Polyhaline Mud Validatio	n Data Set		
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(1)	66.67(6)	61.90
ERM Exceedance	Severely Degraded	-	100.00(4)	100.00
VA Province	Severely Degraded and Degraded	0.00(1)	66.67(6)	57.14
VA Province	Severely Degraded	0.00(1)	100.00(3)	93.33
All Province	Severely Degraded and Degraded	100.00(3)	75.00(4)	91.07
All Province	Severely Degraded	50.00(2)	100.00(2)	70.00
-	High Mesohaline Sand Calibr	ation Data Set		
Classification	-			
Scheme	Data Set Used	Contaminant	Other	Total
All Province	Severely Degraded and Degraded	100.00(3)	100.00(16)	100.00
All Province	Severely Degraded	100.00(3)	100.00(11)	100.00
	High Mesohaline Sand Valida		,	
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
All Province	Severely Degraded and Degraded	-	100.00(5)	100.00
All province	Severely Degraded Severely Degraded	_	100.00(2)	100.00
- III province	High Mesohaline Mud Calibr	ation Data Set	100.00(2)	100.00
Classification	6			
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(2)	100.00(55)	100.00
ERM Exceedance	Severely Degraded Severely Degraded	100.00(2)	100.00(33)	100.00
VA Province	Severely Degraded and Degraded	100.00(2)	100.00(37)	100.00
VA Province	Severely Degraded Severely Degraded	100.00(12)	100.00(43)	100.00
All Province	Severely Degraded and Degraded	100.00(37)	100.00(20)	100.00
All Province	Severely Degraded Severely Degraded	100.00(37)	100.00(20)	100.00
7 III I TOVINCE	High Mesohaline Mud Valida		100.00(10)	100.00
Classification	riigii wesoname waa vana	anon Bata Set		
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(1)	83.33(18)	Total 80.41
ERM Exceedance	Severely Degraded Severely Degraded	0.00(1)		83.33
VA Province		0.00(2)	83.33(12) 70.59(17)	55.73
	Saverely Degraded and Degraded			
	Severely Degraded and Degraded	0.00(2)	01.59(17)	
VA Province	Severely Degraded	-	91.67(12)	100.00
		44.44(9) 75.00(8)	91.67(12) 60.00(10) 100.00(4)	

Table 11. Continued.

	Low Mesohaline Calibration	on Data Set		
Classification	Low Mesonanne Canbratic	ni Data Set		
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(2)	100.00(29)	100.00
ERM Exceedance	Severely Degraded	100.00(3)	100.00(23)	100.00
VA Province	Severely Degraded and Degraded	100.00(9)	100.00(22)	100.00
VA Province	Severely Degraded	100.00(9)	100.00(17)	100.00
ALL Province	Severely Degraded and Degraded	100.00(13)	100.00(18)	100.00
ALL Province	Severely Degraded	100.00(13)	100.00(13)	100.00
	Low Mesohaline Validatio			
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(3)	57.14(7)	53.46
ERM Exceedance	Severely Degraded	0.00(2)	80.00(5)	70.77
VA Province	Severely Degraded and Degraded	40.00(5)	80.00(5)	68.39
VA Province	Severely Degraded	25.00(4)	66.67(3)	52.24
ALL Province	Severely Degraded and Degraded	42.86(7)	66.67(3)	56.68
ALL Province	Severely Degraded	25.00(4)	66.67(3)	45.83
	Oligohaline Calibration	Data Set		
Classification				-
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(6)	100.00(19)	100.00
ERM Exceedance	Severely Degraded	100.00(4)	100.00(7)	100.00
VA Province	Severely Degraded and Degraded	100.00(10)	100.00(15)	100.00
VA Province	Severely Degraded	100.00(5)	100.00(6)	100.00
ALL Province	Severely Degraded and Degraded	100.00(19)	100.00(6)	100.00
ALL Province	Severely Degraded	100.00(10)	100.00(1)	100.00
	Oligohaline Validation l	Data Set		
Classification				-
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(2)	66.67(3)	74.67
ERM Exceedance	Severely Degraded	0.00(1)	0.00(1)	0.00
VA Province	Severely Degraded and Degraded	50.00(4)	100.00(1)	80.00
VA Province	Severely Degraded	50.00(2)	-	50.00
ALL Province	Severely Degraded and Degraded	100.00(5)	-	100.00
ALL Province	Severely Degraded	50.00(2)	-	50.00

Table 11. Continued.

		-		
	Tidal Freshwater Calibration	n Data Set		
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(3)	100.00(24)	100.00
ERM Exceedance	Severely Degraded	100.00(1)	100.00(13)	100.00
VA Province	Severely Degraded and Degraded	100.00(10)	100.00(17)	100.00
VA Province	Severely Degraded	100.00(5)	100.00(9)	100.00
ALL Province	Severely Degraded and Degraded	100.00(19)	100.00(8)	100.00
ALL Province	Severely Degraded	100.00(8)	100.00(6)	100.00
	Tidal Freshwater Validatio	n Data Set		
Classification				
Scheme	Data Set Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(1)	83.33(6)	85.19
ERM Exceedance	Severely Degraded	50.00(2)	100.00(1)	96.43
VA Province	Severely Degraded and Degraded	50.00(4)	33.33(3)	39.51
VA Province	Severely Degraded	50.00(1)	50.00(2)	67.86
ALL Province	Severely Degraded and Degraded	40.00(5)	0.00(2)	28.15
ALL Province	Severely Degraded	50.00(2)	0.00(1)	28.57

Table 12. Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites into one of the four stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

			Calib	ration Data S	Set	
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	100.00(2)	100.00(8)	100.00(24)	100.00
ERM Exceedance	Severely Degraded Only	-	100.00(1)	100.00(7)	100.00(9)	100.00
VA Province	Severely Degraded and Degraded	-	100.00(4)	100.00(8)	100.00(22)	100.00
VA Province	Severely Degraded Only	-	100.00(1)	100.00(7)	100.00(9)	100.00
All Province	Severely Degraded and Degraded	100.00(4)	100.00(16)	100.00(4)	100.00(10)	100.00
All Province	Severely Degraded Only	100.00(5)	100.00(9)	100.00(2)	100.00(1)	100.00
			Valid	lation Data S	et	
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	0.00(1)	50.00(2)	57.14(7)	52.10
ERM Exceedance	Severely Degraded Only	-	-	100.00(2)	100.00(2)	100.00
VA Province	Severely Degraded and Degraded	-	100.00(1)	50.00(2)	57.14(7)	60.50
VA Province	Severely Degraded Only	-	0.00(1)	100.00(2)	100.00(1)	94.12
All Province	Severely Degraded and Degraded	100.00(1)	100.00(5)	100.00(1)	0.00(3)	70.59
All Province	Severely Degraded Only	50.00(2)	-	100.00(2)	_	59.09

Table 13. Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites into the Contaminant, Combined and Unknown stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

			Calibration	Data Set	
Classification Scheme	Sites Used	Combined (Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	100.00(3)	100.00(24)	100.00
ERM Exceedance	Severely Degraded Only	-	100.00(1)	100.00(10)	100.00
VA Province	Severely Degraded and Degraded	-	100.00(5)	100.00(22)	100.00
VA Province	Severely Degraded Only	-	100.00(2)	100.00(9)	100.00
All Province	Severely Degraded and Degraded	100.00(4)	100.00(15)	100.00(12)	100.00
All Province	Severely Degraded Only	100.00(4)	100.00(9)	100.00(1)	100.00
		Validation Data Set			
Classification Scheme	Sites Used	Combined (Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	-	-	85.71(7)	85.71
ERM Exceedance	Severely Degraded Only	-	-	100.00(1)	100.00
VA Province	Severely Degraded and Degraded	-	-	71.43(7)	71.43
VA Province	Severely Degraded Only	-	-	100.00(1)	100.00
All Province	Severely Degraded and Degraded	0.00(1)	66.67(6)	0.00(1)	32.26
All Province	Severely Degraded Only	0.00(1)	50.00(2)	-	34.62

Table 14. Classification efficiencies of linear discriminant functions developed for classifying Polyhaline sites

into the Contaminant and all Other stress groups with and without Low D.O. sites. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

With Low DO stress gr	oup			
		Calil	oration Data Set	i
Cl:::	Sites Used	Ctit	Other	Т-4-1
Classification Scheme ERM Exceedance	Severely Degraded and Degraded	Contaminant 100.00(2)	100.00(32)	Total 100.00
ERM Exceedance	Severely Degraded Only	100.00(2)	100.00(32)	100.00
VA Province	Severely Degraded and Degraded	100.00(1)	100.00(10)	100.00
VA Province	Severely Degraded Only	100.00(4)	100.00(30)	100.00
All Province	Severely Degraded and Degraded	100.00(1)	100.00(18)	100.00
All Province	Severely Degraded Only	100.00(10)	100.00(18)	100.00
7 III I TOVINCE	Severely Degraded Only	100.00(2)	100.00(0)	100.00
		Vali	dation Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(1)	77.78(9)	73.20
ERM Exceedance	Severely Degraded Only	-	100.00(4)	100.00
VA Province	Severely Degraded and Degraded	100.00(1)	66.67(9)	70.59
VA Province	Severely Degraded Only	0.00(1)	100.00(3)	94.12
All Province	Severely Degraded and Degraded	80.00(5)	80.00(5)	80.00
All Province	Severely Degraded Only	100.00(2)	50.00(2)	76.47
Without Low DO stress	s group			
		Calil	oration Data Set	
		Cum	Station Data Sci	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(3)	100.00(24)	100.00
ERM Exceedance	Severely Degraded Only	100.00(1)	100.00(10)	100.00
VA Province	Severely Degraded and Degraded	100.00(5)	100.00(22)	100.00
VA Province	Severely Degraded Only	100.00(2)	100.00(9)	100.00
All Province	Severely Degraded and Degraded	100.00(15)	100.00(16)	100.00
All Province	Severely Degraded Only	100.00(9)	100.00(5)	100.00
		Vali	dation Data Set	
		v an	dation Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	-	85.71(7)	85.71
ERM Exceedance	Severely Degraded Only	-	100.00(1)	100.00
VA Province	Severely Degraded and Degraded	-	71.43(7)	71.43
VA Province	Severely Degraded Only	-	100.00(1)	100.00
All Province	Severely Degraded and Degraded	66.67(6)	50.00(2)	58.06
All Province	Severely Degraded Only	100.00(2)	0.00(1)	64.29

Table 15. Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into one of the four stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

			Calibrati	on Data Set		
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	57.14(7)	100.00(6)	94.74(19)	96.92(65)	93.81
ERM Exceedance	Severely Degraded Only	50.00(6)	100.00(4)	100.00(19)	97.83(46)	94.67
VA Province	Severely Degraded and Degraded	100.00(15)	100.00(22)	63.64(11)	95.92(49)	93.81
VA Province	Severely Degraded Only	100.00(12)	100.00(16)	69.23(13)	94.12(34)	92.00
All Province	Severely Degraded and Degraded	95.45(22)	97.87(47)	75.00(4)	91.67(24)	94.85
All Province	Severely Degraded Only	100.00(20)	97.22(36)	100.00(5)	100.00(14)	98.67
			Validati	on Data Set		
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(1)	0.00(2)	40.00(5)	61.11(36)	56.00
ERM Exceedance	Severely Degraded Only	0.00(1)	0.00(3)	75.00(4)	17.65(17)	29.82
VA Province	Severely Degraded and Degraded	66.67(3)	66.67(6)	0.00(3)	40.63(32)	45.95
VA Province	Severely Degraded Only	75.00(4)	33.33(6)	0.00(1)	57.14(14)	45.02
All Province	Severely Degraded and Degraded	100.00(5)	45.45(22)	0.00(1)	56.25(16)	58.62
All Province	Severely Degraded Only	60.00(5)	53.33(15)	-	0.00(5)	44.57

Table 16. Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into the Contaminant, Combined and Unknown stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

			Calibration D	Data Set	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(6)	100.00(5)	97.33(75)	97.67
ERM Exceedance	Severely Degraded Only	100.00(6)	100.00(5)	100.00(47)	100.00
VA Province	Severely Degraded and Degraded	93.33(15)	91.30(23)	94.44(54)	93.48
VA Province	Severely Degraded Only	100.00(14)	100.00(17)	96.97(33)	98.44
All Province	Severely Degraded and Degraded	92.00(25)	100.00(47)	95.65(23)	96.84
All Province	Severely Degraded Only	100.00(17)	100.00(40)	93.33(15)	98.61
			Validation D	ata Set	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(2)	33.33(3)	57.69(26)	59.23
ERM Exceedance	Severely Degraded Only	0.00(1)	100.00(2)	12.50(16)	18.75
VA Province	Severely Degraded and Degraded	66.67(3)	80.00(5)	59.26(27)	65.65
VA Province	Severely Degraded Only	100.00(2)	40.00(5)	0.00(15)	32.50
All Province	Severely Degraded and Degraded	100.00(2)	45.45(22)	58.82(17)	63.05
All Province	Severely Degraded Only	87.50(8)	63.64(11)	25.00(4)	61.22

Table 17. Classification efficiencies of linear discriminant functions developed for classifying Mesohaline sites into the Contaminant and all Other stress groups with and without Low D.O. sites. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Scenarios with the best overall and within stress group classification efficiencies are highlighted in bold. Values in parentheses are the total number observations for each stress group.

		Calibrat	tion Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded Only	100.00(91)	100.00(6)	100.00
ERM Exceedance	Severely Degraded Only	100.00(4)	100.00(71)	100.00
VA Province	Severely Degraded and Degraded Only	95.45(22)	96.00(75)	95.88
VA Province	Severely Degraded Only	100.00(16)	0.00(59)	98.67
All Province	Severely Degraded and Degraded Only	89.36(47)	96.00(50)	92.78
All Province	Severely Degraded Only	97.22(36)	100.00(39)	98.67
		Validat	ion Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded Only	0.00(2)	76.19(42)	71.48
ERM Exceedance	Severely Degraded Only	0.00(3)	72.73(22)	68.85
VA Province	Severely Degraded and Degraded Only	66.67(6)	73.68(38)	72.09
VA Province	Severely Degraded Only	33.33(6)	73.68(19)	65.08
All Province	Severely Degraded and Degraded Only	50.00(22)	81.82(22)	66.40
All Province	Severely Degraded Only	53.33(15)	70.00(10)	62.00
Without Low D.O. Stre	ss Group			
		Calibrat	tion Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded Only	100.00(5)	100.00(81)	100.00
ERM Exceedance	Severely Degraded Only	100.00(5)	100.00(53)	100.00
VA Province	Severely Degraded and Degraded Only	91.30(23)	97.10(69)	95.65
VA Province	Severely Degraded Only	100.00(17)	100.00(47)	100.00
All Province	Severely Degraded and Degraded Only	93.62(47)	97.92(48)	95.79
All Province	Severely Degraded Only	100.00(40)	100.00(32)	100.00
		Validat	ion Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded Only	33.33(3)	78.57(28)	75.94
ERM Exceedance	Severely Degraded Only	100.00(2)	70.59(17)	73.12
VA Province	Severely Degraded and Degraded Only	80.00(5)	66.67(30)	70.00
VA Province	Severely Degraded Only	40.00(5)	76.47(17)	66.78
All Province	Severely Degraded and Degraded Only	40.91(22)	84.21919)	62.79
All Province	Severely Degraded Only	81.82(11)	75.00(12)	78.79

Table 18. Classification efficiencies of linear discriminant functions developed for classifying Tidal Freshwater and Oligohaline sites into the Contaminant and all Other stress groups. Shown are the percentages of correctly classified observations for each stress group and the total percentage of observations correctly classified by the discriminant function. Values in parentheses are the total number observations for each stress group.

		Calibrati	on Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	100.00(7)	97.67(43)	98.00
ERM Exceedance	Severely Degraded Only	100.00(6)	100.00(19)	100.00
VA Province	Severely Degraded and Degraded	94.44(18)	100.00(32)	98.00
VA Province	Severely Degraded Only	100.00(10)	100.00(15)	100.00
All Province	Severely Degraded and Degraded	94.59(37)	76.92(13)	90.00
All Province	Severely Degraded Only	100.00(18)	100.00(7)	100.00
		Validati	on Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	40.00(5)	55.56(9)	53.38
ERM Exceedance	Severely Degraded Only	50.00(2)	100.00(3)	88.00
VA Province	Severely Degraded and Degraded	50.00(10)	0.00(4)	18.00
VA Province	Severely Degraded Only	33.33(3)	0.00(2)	13.33
All Province	Severely Degraded and Degraded	45.45(11)	33.33(3)	42.30
All Province	Severely Degraded Only	50.00(4)	0.00(1)	36.00

Table 19. Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between four potential stress groups for both uncorrected and salinity corrected data. Shown are the stress group specific and total percentages of correctly classified observations for each discriminant function. Values in parentheses are the total number observations for each stress group.

grou			G 121	. D . G .		
Without Salinity Correct		G 1: 1		ion Data Set	TT 1	TD + 1
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	57.14(7)	84.62(13)	70.83(24)	92.13(127)	87.23
ERM Exceedance	Severely Degraded Only	100.00(8)	100.00(12)	73.68(19)	96.83(63)	93.14
VA Province VA Province	Severely Degraded and Degraded	86.67(15)	58.33(36)	56.25(16)	87.50(104)	78.36
	Severely Degraded Only	100.00(15)	88.46(26)	83.33(12)	97.96(49)	96.12
All Province	Severely Degraded and Degraded	72.00(25)	88.64(88)	100.00(6)	67.31(52)	80.12
All Province	Severely Degraded Only	87.50(16)	95.16(62)	100.00(5)	84.21(19)	92.16
C1 'C' ' C 1	C'. II 1	G 1: 1		ion Data Set	TT 1	TD + 1
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(2)	60.00(10)	70.00(10)	69.64(56)	66.11
ERM Exceedance	Severely Degraded Only	50 00(4)	23.08(4)	25.00(13)	36.73(32)	38.81
VA Province	Severely Degraded and Degraded	50.00(4)	40.00(25)	25.00(8)	63.41(41)	53.71
VA Province	Severely Degraded Only	100.00(2)	45.45(11)	18.18(11)	40.00(25)	45.69
All Province	Severely Degraded and Degraded	62.50(8)	78.00(50)	0.00(4)	43.75(16)	62.58
All Province	Severely Degraded Only	73.33(15)	59.09(22)	0.00(4)	50.00(8)	56.73
Linear Regression Salir		<u> </u>		ibration	** 1	- T
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	57.14(7)	92.31(13)	70.83(24)	92.37(118)	87.65
ERM Exceedance	Severely Degraded Only	100.00(8)	100.00(12)	73.68(19)	91.53(59)	89.80
VA Province	Severely Degraded and Degraded	93.33(15)	63.89(36)	62.50(16)	90.53(95)	82.10
Va Province	Severely Degraded Only	100.00(15)	88.46(26)	91.67(12)	91.11(45)	91.84
All Province	Severely Degraded and Degraded	72.00(25)	88.51(87)	83.33(6)	75.00(44)	82.10
All Province	Severely Degraded Only	95.45(22)	91.23(57)	60.00(5)	85.71(14)	89.80
THI TTO VINCE	Severely Degraded Siny	75.15(22)		lidation	03.71(11)	07.00
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(2)	30.00(10)	70.00(10)	66.67(54)	61.34
ERM Exceedance	Severely Degraded Only	-	0.00(4)	15.38(13)	37.50(32)	34.50
VA Province	Severely Degraded and Degraded	50.00(4)	32.00(25)	62.50(8)	69.23(39)	58.51
VA Province	Severely Degraded Only	100.00(2)	45.45(11)	9.09(11)	40.00(25)	46.85
All Province	Severely Degraded and Degraded	62.50(8)	73.47(36)	0.00(4)	40.00(15)	59.97
		` ′				
All Province	Severely Degraded Only	77.78(9)	40.74(27)	0.00(4)	44.44(9)	45.71
Polynomial Regression		G 1: 1		ibration	TT 1	/D / 1
Classification Scheme ERM Exceedance	Sites Used Severely Degraded and Degraded	Combined	Contaminant	Low D.O.	Unknown	Total 85.19
		42.86(7)	76.92(13)	70.83(24)	91.53(118)	
ERM Exceedance	Severely Degraded Only	100.00(8)	91.67(12)	68.42(19)	93.22(59)	88.78
VA Province	Severely Degraded and Degraded	93.33(15)	66.67(36)	62.50(16)	88.42(95)	81.48
VA Province	Severely Degraded Only	100.00(15)	84.62(22)	75.00(12)	95.56(45)	90.82
All Province	Severely Degraded and Degraded	72.00(25)	88.51(87)	83.33(6)	79.55(44)	83.33
All Province	Severely Degraded Only	95.45(22)	91.23(57)	60.00(5)	85.71(14)	89.80
	, , , , , , , , , , , , , , , , , , ,			lidation	. ,	
Classification Scheme	Sites Used	Combined	Contaminant	Low D.O.	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	0.00(2)	30.00(10)	60.00(10)	72.22(54)	63.90
ERM Exceedance	Severely Degraded Only	. ,	75.00(4)	15.38(13)	37.50(12)	37.83
		= 0.00/10		37.50(8)	61.54(39)	51.53
VA Province	Severely Degraded and Degraded	50 0000				
VA Province	Severely Degraded and Degraded	50.00(4)	32.00(25)			
VA Province	Severely Degraded Only	100.00(2)	45.45(11)	45.45(11)	44.00(25)	53.14
VA Province All Province	Severely Degraded Only Severely Degraded and Degraded	100.00(2) 62.50(8)	45.45(11) 65.31(49)	45.45(11) 0.00(4)	44.00(25) 40.00(15)	53.14 55.58
VA Province	Severely Degraded Only	100.00(2)	45.45(11)	45.45(11)	44.00(25)	53.14 55.58 46.63

Table 20. Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant, Combined and Unknown stress groups for both uncorrected and salinity corrected data. Shown are the stress group specific and total percentages of correctly classified observations for each discriminant function. Values in parentheses are the total number observations for each stress group.

Without Salinity Correcti	on		Calibration	Data Set	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	75.00(4)	91.67(12)	96.88(128)	95.83
ERM Exceedance	Severely Degraded Only	100.00(8)	100.00(9)	97.18(69)	97.73
VA Province	Severely Degraded and Degraded	84.62(13)	82.05(39)	89.11(101)	86.93
VA Province	Severely Degraded Only	100.00(13)	91.67(24)	92.86(56)	93.55
All Province	Severely Degraded and Degraded	77.27(22)	89.01(91)	70.00(50)	81.60
All Province	Severely Degraded Only	78.95(19)	94.83(58)	90.00(20)	90.72
			Validation 1	Data Set	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	40.00(5)	9.09(11)	87.27(55)	78.96
ERM Exceedance	Severely Degraded Only	-	28.57(7)	62.50(24)	58.68
VA Province	Severely Degraded and Degraded	50.00(6)	27.27(22)	63.64(44)	53.21
VA Province	Severely Degraded Only	100.00(4)	38.46(13)	33.33(18)	43.98
All Province	Severely Degraded and Degraded	54.55(11)	85.11(47)	50.00(18)	70.21
All Province	Severely Degraded Only	83.33(12)	61.54(26)	57.14(7)	64.90
Linear Regression Salinit	y Correction		Calibra	tion	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	75.00(4)	91.67(12)	98.33(120)	97.06
ERM Exceedance	Severely Degraded Only	100.00(8)	100.00(9)	97.06(68)	97.65
VA Province	Severely Degraded and Degraded	84.62(13)	84.62(39)	90.11(91)	88.11
VA Province	Severely Degraded Only	100.00(13)	91.67(24)	90.57(53)	92.22
All Province	Severely Degraded and Degraded	81.82(22)	93.33(90)	73.81(42)	86.36
All Province	Severely Degraded Only	91.67(24)	96.23(53)	81.25(16)	92.47
			Valida	tion	
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	40.00(5)	9.09(11)	84.62(52)	76.64
ERM Exceedance	Severely Degraded Only	-	14.29(7)	60.87(23)	55.42
VA Province	Severely Degraded and Degraded	66.67(6)	22.73(22)	48.84(43)	43.34
VA Province	Severely Degraded Only	100.00(4)	23.08(13)	23.53(17)	34.45
All Province	Severely Degraded and Degraded	54.55(11)	82.61(46)	58.82(17)	72.11
All Province	Severely Degraded Only	57.14(7)	64.52(31)	71.43(7)	63.80
Polynomial Regression S		Calibration			
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	75.00(4)	83.33(12)	98.33(120)	96.32
ERM Exceedance	Severely Degraded Only	100.00(8)	100.00(9)	97.06(68)	97.65
VA Province	Severely Degraded and Degraded	84.62(13)	76.92(39)	90.11(91)	86.01
VA Province	Severely Degraded Only	100.00(13)	91.67(24)	92.45(53)	93.33
All Province	Severely Degraded and Degraded	81.82(22)	93.33(90)	73.81(42)	86.36
All Province	Severely Degraded Only	91.67(24)	96.23(53)	81.25(16)	92.47
			Valida		
Classification Scheme	Sites Used	Combined	Contaminant	Unknown	Total
ERM Exceedance	Severely Degraded and Degraded	40.00(5)	18.18(11)	80.77(52)	74.05
ERM Exceedance	Severely Degraded Only	-	14.29(7)	65.22(23)	59.26
VA Province	Severely Degraded and Degraded	50.00(6)	22.73(22)	58.14(43)	47.74
VA Province	Severely Degraded Only	100.00(4)	15.38(13)	23.53(17)	32.40
All Province	Severely Degraded and Degraded	54.55(11)	80.43(46)	58.82(17)	70.84
All Province	Severely Degraded Only	57.14(7)	58.06(31)	71.43(7)	60.13

Table 21. Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant and all Other stress groups with Low D.O. sites for both uncorrected and salinity corrected data. Shown are the stress group specific and total percentages of correctly classified observations for each discriminant function. Values in parentheses are the total number observations for each stress group.

Without Salinity Correction		Cali	bration Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	84.62(158)	96.20(13)	95.32
ERM Exceedance	Severely Degraded Only	100.00(12)	100.00(90)	100.00
VA Province	Severely Degraded and Degraded	50.00(36)	94.81(135)	85.38
VA Province	Severely Degraded Only	84.62(26)	98.68(76)	95.1
All Province	Severely Degraded and Degraded	81.82(88)	73.49(83)	77.78
All Province	Severely Degraded Only	91.23(57)	93.33(45)	92.16
		Val	idation Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	40.00(10)	86.76(68)	83.21
ERM Exceedance	Severely Degraded Only	25.00(4)	73.33(45)	67.65
VA Province	Severely Degraded and Degraded	48.00(25)	79.25(53)	72.67
VA Province	Severely Degraded Only	45.45(11)	71.05(38)	64.53
All Province	Severely Degraded and Degraded	82.00(50)	67.86(28)	75.14
All Province	Severely Degraded Only	40.74(27)	59.09(22)	48.84
Linear Regression Salinit			Calibration	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	84.62(13)	95.97(149)	95.06
ERM Exceedance	Severely Degraded Only	100.00(12)	98.84(86)	98.98
VA Province	Severely Degraded and Degraded	61.11(36)	93.65(126)	86.42
VA Province	Severely Degraded Only	80.77(26)	97.22(70)	92.86
All Province	Severely Degraded and Degraded	86.21(87)	77.33(75)	82.10
All Province	Severely Degraded Only	92.98(57)	90.24(41)	91.84
			Validation	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	30.00(10)	84.85(66)	80.45
ERM Exceedance	Severely Degraded Only	50.00(4)	71.11(45)	68.53
VA Province	Severely Degraded and Degraded	40.00(25)	76.47(51)	68.37
VA Province	Severely Degraded Only	45.45(11)	11.05(38)	64.26
All Province	Severely Degraded and Degraded	81.63(49)	66.67(18)	74.70
All Province	Severely Degraded Only	51.85(27)	59.09(22)	54.88
Polynomial Regression Sa			Calibration	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	76.92(13)	95.97(149)	94.44
ERM Exceedance	Severely Degraded Only	91.67(12)	100.00(86)	98.98
VA Province	Severely Degraded and Degraded	58.33(36)	93.65(126)	85.80
VA Province	Severely Degraded Only	80.77(26)	98.61(72)	93.88
All Province	Severely Degraded and Degraded	87.36(87)	77.33(75)	82.72
All Province	Severely Degraded Only	92.98(57)	90.24(41)	91.84
			Validation	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	30.00(10)	89.39(66)	84.63
ERM Exceedance	Severely Degraded Only	75.00(4)	66.67(45)	67.69
VA Province	Severely Degraded and Degraded	32.00(25)	76.47(51)	66.59
VA Province	Severely Degraded Only	45.45(11)	73.68(38)	66.19
All Province	Severely Degraded and Degraded	67.35(49)	66.67(27)	67.03
All Province	Severely Degraded Only	51.85(27)	59.09(22)	54.88
1 10 / 11100	20. Story Dogradou Only	51.05(27)	27.07(22)	54.00

Table 22. Classification efficiencies of linear discriminant functions developed for Baywide scenarios to discriminate between the Contaminant and all Other groups without Low D.O. sites for both uncorrected and salinity corrected data. Shown are the stress group specific and total percentages of correctly classified observations for each discriminant function. Values in parentheses are the total number observations for each stress group.

Without Salinity Correction		Cali	bration Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	91.67(12)	98.48(132)	97.92
ERM Exceedance	Severely Degraded Only	100.00(9)	100.00(79)	100.00
VA Province	Severely Degraded and Degraded	79.49(39)	93.86(114)	90.20
VA Province	Severely Degraded Only	87.50(24)	95.65(69)	93.55
All Province	Severely Degraded and Degraded	84.62(91)	75.00(72)	80.37
All Province	Severely Degraded Only	92.45(53)	88.64(44)	90.72
		Vali	dation Data Set	
Classification Scheme	Sites Used	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	9.09(11)	91.67(60)	84.79
ERM Exceedance	Severely Degraded Only	28.57(7)	83.33(24)	77.73
VA Province	Severely Degraded and Degraded	22.73(22)	68.00(50)	56.46
VA Province	Severely Degraded Only	38.46(13)	45.45(22)	43.65
All Province	Severely Degraded and Degraded	87.23(47)	55.17(29)	73.07
All Province	Severely Degraded Only	58.06(31)	50.00(14)	54.41
Linear Regression Salinity C			Calibration	T 1
Classification Scheme ERM Exceedance	Sites Used Severely Degraded and Degraded	Contaminant	Other	Total 99.26
ERM Exceedance		91.67(12)	100.00(124)	
	Severely Degraded Only	100.00(9)	100.00(76)	100
VA Province	Severely Degraded and Degraded	82.05(39)	95.19(104)	91.61
VA Province	Severely Degraded Only	91.67(24)	93.94(66)	93.33
All Province	Severely Degraded and Degraded	88.89(90)	71.88(64)	81.82
All Province	Severely Degraded Only	92.45(53)	85.00(40)	89.25
			X 7 1' 1 4'	
Classification Schame	Sites Head	Contominant	Validation	Total
Classification Scheme	Sites Used Savaraly Dagraded and Dagraded	Contaminant	Other	Total
ERM Exceedance	Severely Degraded and Degraded	9.09(11)	Other 89.47(57)	82.38
ERM Exceedance ERM Exceedance	Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6)	Other 89.47(57) 82.61(19)	82.38 75.37
ERM Exceedance ERM Exceedance VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded	9.09(11) 14.29(6) 27.27(22)	Other 89.47(57) 82.61(19) 59.18(49)	82.38 75.37 50.48
ERM Exceedance ERM Exceedance VA Province VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21)	82.38 75.37 50.48 30.60
ERM Exceedance ERM Exceedance VA Province VA Province All Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28)	82.38 75.37 50.48 30.60 76.26
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14)	82.38 75.37 50.48 30.60
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration	82.38 75.37 50.48 30.60 76.26 51.52
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other	82.38 75.37 50.48 30.60 76.26 51.52
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province All Province	Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded And Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Classification Scheme	Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province VA Province All Province All Province Classification Scheme ERM Exceedance	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Sites Used Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant 18.18(11)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other 84.21(57)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total 78.38
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Classification Scheme ERM Exceedance ERM Exceedance	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Severely Degraded only Severely Degraded and Degraded Severely Degraded Only Sites Used Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant 18.18(11) 14.29(7)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other 84.21(57) 73.91(23)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total 78.38 67.60
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Classification Scheme ERM Exceedance ERM Exceedance VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Severely Degraded Only Sites Used Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant 18.18(11) 14.29(7) 27.27(22)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other 84.21(57) 73.91(23) 61.22(49)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total 78.38 67.60 51.96
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VI Province All Province All Province Classification Scheme ERM Exceedance VA Province VI Province All Province VI Province VI Province VI Province VI Province VI Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Sites Used Severely Degraded Only Sites Used Severely Degraded and Degraded Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant 18.18(11) 14.29(7) 27.27(22) 23.08(13)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other 84.21(57) 73.91(23) 61.22(49) 38.10(21)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total 78.38 67.60 51.96 34.09
ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Polynomial Regression Salin Classification Scheme ERM Exceedance ERM Exceedance VA Province VA Province All Province All Province Classification Scheme ERM Exceedance ERM Exceedance VA Province	Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only ity Correction Sites Used Severely Degraded and Degraded Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded and Degraded Severely Degraded Only Severely Degraded Only Severely Degraded Only Severely Degraded Only Sites Used Severely Degraded Only	9.09(11) 14.29(6) 27.27(22) 23.08(13) 84.78(46) 58.06(31) Contaminant 83.33(12) 100.00(9) 82.05(39) 91.67(24) 88.89(90) 94.34(53) Contaminant 18.18(11) 14.29(7) 27.27(22)	Other 89.47(57) 82.61(19) 59.18(49) 33.33(21) 64.29(28) 42.86(14) Calibration Other 100.00(124) 100.00(76) 94.23(104) 96.97(66) 71.88(64) 87.50(40) Validation Other 84.21(57) 73.91(23) 61.22(49)	82.38 75.37 50.48 30.60 76.26 51.52 Total 98.53 100.00 90.91 95.56 81.82 91.40 Total 78.38 67.60 51.96

Table 23. Classification efficiencies of discriminant functions developed for selected scenarios after application of the stepwise discriminant and ANOVA variable reduction procedures.

Across Habitat Sev	verely Degraded and Degraded Ste	pwise Variable Reducti	on	
Classification Sche	eme			
	Data Set	Contaminant	Other	Total
All Province	Validation	63.33(90)	70.93(86)	67.05
All Province	Validation	68.00(50)	66.67(30)	67.35
	verely Degraded and Degraded AN	IOVA Variable Reducti	on	
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Validation	71.11(90)	68.60(86)	30.11
All Province	Validation	68.00(50)	70.00(30)	31.02
	everely Degraded and Degraded W	ith Low D.O. Sites Ste	pwise Variable Redu	iction
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	88.89	80.00	85.71
All Province	Validation	100.00	25.00	73.21
	everely Degraded and Degraded W	1th Low D.O. Sites AN	OVA Variable Redu	iction
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	100.00	100.00	100.00
All Province	Validation	66.67	50.00	60.61
	Mud Severely Degraded and Degra	ded With Low D.O. Site	es Stepwise Variable	Reduction
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	89.19	71.43	82.76
All Province	Validation	44.44	54.55	48.10
	Mud Severely Degraded and Degra	ded With Low D.O. Site	s ANOVA Variable	Reduction
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	86.47	75.00	82.46
All Province	Validation	77.78	60.00	71.54
	y Degraded and Degraded With L	ow D.O. Sites Stepwise	Variable Reduction	
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	93.75	83.33	88.24
All Province	Validation	100.00	40.00	68.24
	y Degraded and Degraded With L	ow D.O. Sites ANOVA	Variable Reduction	1
Classification Sche				
	Data Set	Contaminant	Other	Total
All Province	Calibration	87.50	100.00	94.12
All Province	Validation	100.00	40.00	68.24
Mesohaline Severe				
C1 'C' ' C 1	ely Degraded Only With Low D.O	. Sites Stepwise Variabl	e Reduction	
Classification Sche	eme	-		
-	eme Data Set	Contaminant	Other	Total
All Province	eme Data Set Calibration	Contaminant 75.00	Other 94.87	85.33
All Province All Province	eme Data Set Calibration Validation	Contaminant 75.00 53.85	Other 94.87 66.67	
All Province All Province Mesohaline Severe	eme Data Set Calibration Validation ely Degraded Only With Low D.O	Contaminant 75.00 53.85	Other 94.87 66.67	85.33
All Province All Province	eme Data Set Calibration Validation ely Degraded Only With Low D.O eme	Contaminant 75.00 53.85 . Sites ANOVA Variabl	Other 94.87 66.67 e Reduction	85.33 60.51
All Province All Province Mesohaline Severe Classification Sche	eme Data Set Calibration Validation ely Degraded Only With Low D.O eme Data Set	Contaminant 75.00 53.85 Sites ANOVA Variabl	Other 94.87 66.67 e Reduction	85.33 60.51 Total
All Province All Province Mesohaline Severe	eme Data Set Calibration Validation ely Degraded Only With Low D.O eme	Contaminant 75.00 53.85 . Sites ANOVA Variabl	Other 94.87 66.67 e Reduction	85.33 60.51

Table 24. Coefficients and cutoff values for the Baywide linear discriminant function for classifying severely

degraded and degraded sites into the Contaminant and Other stress groups using "uncorrected" data.

Variable	Coefficien	t Variable	Coefficient
Bivalvia Abundance	-5.7758	Mollusca Abundance	3.4078
Deep Deposit Feeder Species Richness	-4.9318	Deep Deposit Feeder Proportional Abundance	2.9854
Haustoriidae Abundance	-1.9847	Infaunal Species Richness	2.8957
Carnivore-Omnivore Species Richness	-1.9341	Haustoriidae Proportional Abundance	2.1790
Epifaunal Species Richness	-1.6869	Corophiidae Abundance	2.0845
Spionidae Species Richness	-1.6390	Tubificidae Species Richness	1.8683
Interface Feeder Species Richness	-1.5044	Oligochaeta Species Richness	1.7297
Polychaeta Proportional Abundance	-1.3688	Interface Feeder Proportional Abundance	1.4703
Suspension Feeder Species Richness	-1.2402	Interface Feeder Abundance	1.4380
Corophiidae Species Richness	-1.2291	Capitellidae Species Richness	1.3813
Deep Deposit Feeder Abundance	-1.1099	Epifaunal Species Richness	1.3278
Isopoda Species Richness	-0.9923	Suspension Feeder Abundance	1.2508
Gastropoda Abundance	-0.9463	Infaunal Species Diversity	1.2457
Oligochaeta Proportional Abundance	-0.9326	Isopoda Abundance	1.2194
Infaunal Species Evenness	-0.7874	Ratio of Epifaunal to Infaunal Abundance	1.1108
Amphipoda Proportional Abundance	-0.7706	Spionidae Proportional Abundance	0.9090
Ampeliscidae Abundance	-0.6400	Total Biomass	0.8661
Corophiidae Proportional Abundance	-0.6079	Oligochaeta Abundance	0.8107
Amphipoda Species Richness	-0.4602	Polychaeta Species Richness	0.7996
Gastropoda Proportional Abundance	-0.4197	Nereidae Proportional Abundance	0.6975
Nereidae Abundance	-0.4029	Bivalvia Species Richness	0.6930
Mollusca Proportional Abundance	-0.3791	Mollusca Species Richness	0.6648
Ampeliscidae Species Richness	-0.3257	Ampeliscidae Proportional Abundance	0.6035
Epifaunal Species Diversity	-0.2631	Suspension Feeder Proportional Abundance	0.5728
Haustoriidae Species Richness	-0.2470	Amphipoda Abundance	0.5295
Tubificidae Proportional Abundance	-0.2319	Carnivore-Omnivore Proportional Abundance	0.5292
Ratio of Biomass to Abundance	-0.1790	Carnivore-Omnivore Abundance	0.5151
Tubificidae Abundance	-0.1686	Gastropoda Abundance	0.2762
Bivalvia Proportional Abundance	-0.1372	Isopoda Proportional Abundance	0.2669
Spionidae Abundance	-0.1167	Polychaeta Abundance	0.1674
Nereidae Species Richness	-0.0909	Total Infaunal Abundance	0.1516
-		Capitellidae Proportional Abundance	0.1383
		Capitellidae Abundance	0.1211

Cutoff Value=0.2411

Appendix A. List of species classified as epifaunal.

Turbellaria	Gastropoda	Mysidae	Decapoda
Stylochus ellipticus	Goniobasis virginica	Neomysis americana	Panopeus herbstii
Turbellaria spp.	Gyraulus spp.		Penaeidae spp.
	Hydrobia spp.	Isopoda	Pinnotheres ostreum
Polychaeta	Hydrobiidae spp.	Edotea triloba	Processa vicina
Dipolydora commensalis	Hydrobiidae sp. Y Morris	Erichsonella attenuata	Rhithropanopeus harrisii
Filograninae sp. A Morris	Hydrobiidae sp. Z Morris	Erichsonella filiformis	Trachypenaeus constrictus
Harmothoe extenuata	Kurtziella atrostyla	Paracereis caudata	Xanthidae
Harmothoe spp.	Littoridinops tenuipes	Sphaeroma quadridentatum	
Hydroides dianthus	Melanella spp.	Cassidinidea ovalis	Insecta
Hydroides protulicola	Nudibranchia		Brachycercus spp.
Hydroides spp.	Odostomia engonia	Amphipoda	Caenis spp.
Lepidonotus sublevis	Odostomia spp.	Ampithoe longimanna	Coenagrionidae
Lepidonotus variabilis	Physidae spp.	Apocorophium lacustre	Odonata spp.
Polydora websteri	Planorbidae spp.	Apocorophium simile	Curculionidae
Polynoidae spp.	Pleurocera spp.	Batea catharinensis	Dubiraphia spp.
Sabellaria vulgaris	Pyramidella candida	Caprella andreae	Elmidae
Serpulidae spp.	Pyramidellidae spp.	Caprella penantis	Gyrinidae
	Sayella chesapeakea	Caprella spp.	Stenelmis spp.
Hirudinea	Turbonilla spp.	Caprellidae spp.	Cyrnellus fraternus
Hirudinea spp.	Turridae sp. A Mountford	Cerapus tubularis	Hydroptilidae
Batracobdella phalera	Urosalpinx cinerea	Corophium spp.	Oecetis spp.
Helobdella spp.	Valvata sincera	Cymadusa compta	Trichoptera
	Vitrinellidae spp.	Dulichiella appendiculata	
Gastropoda	Viviparidae spp.	Elasmopus laevis	Bryozoa
Amnicola limosa		Ericthonius brasiliensis	Alcyonidium spp.
Anachis lafresnayi	Bivalvia	Gammaropsis sutherlandi	Anguinella palmata
Anachis obesa	Anomia simplex	Gammarus daiberi	Callopora craticula
Anachis spp.	Anomia spp.	Gammarus fasciatus	Membranipora tenuis
Astyris lunata	Crassostrea virginica	Gammarus spp.	
Bittium alternatum	Geukensia demissa	Gitanopsis spp.	Ascidiacea
Boonea bisuturalis	Ischadium recurvum	Melita nitida	Ascidiacea spp.
Boonea impressa	Modiolus spp.	Microprotopus raneyi	Molgula arenata
Boonea seminuda	Mytilidae spp.	Monocorophium acherusicum	Molgula manhattensis
Cincinnatia winkleyi	Mytilopsis leucophaeata	Monocorophium insidiosum	Perophora viridis
Columbella spp.	Mytilus edulis	Monocorophium tuberculatum	ι
Columbellidae spp.		Mucrogammarus mucronatus	
Crassispira ostrearum	Chelicerata	Paracaprella tenuis	
Cratena pilata	Limulus polyphemus	Parametopella cypris	
Crepidula convexa-fornicat	a	Photis pugnator	
Crepidula maculosa	Cladocera	Stenothoe minuta	
Crepidula plana	Cladocera spp.	Stenothoe spp.	
Crepidula spp.			
Cylichnella bidentata	Cirripedia	Decapoda	
Doridella obscura	Balanus improvisus	Callinectes sapidus	
Epitonium greenlandicum	Balanus spp.	Crangon septemspinosa	
		D 1	

Epitonium humphreysi

Mysidae

Americamysis almyra

Americamysis spp.

Mysidae spp.

Heteromysis formosa

Americamysis bigelowi

Epitonium rupicola

Eupleura caudata

Fargoa bushiana Ferrissia rivularis

Gastropoda spp.

Epitonium spp.

Decapoda spp. Dissodactylus mellitae

Pagurus spp.

Eurypanopeus depressus

Pagurus longicarpus

Palaemonetes pugio

Hexapanopeus angustifrons

Appendix B. List of species classified as deep deposit feeders.

Polychaeta

Amastigos caperatus Capitella capitata complex Capitellidae spp. Clymenella torquata Heteromastus filiformis Leitoscoloplos fragilis Leitoscoloplos robustus Leitoscoloplos spp. Macroclymene zonalis Maldanidae spp. Mediomastus ambiseta Notomastus sp. A Ewing Notomastus spp. Orbinia riseri Orbiniidae spp. Pectinaria gouldii Sabaco elongatus Scalibregma inflatum Scoloplos rubra

Travisia sp. A Morris

Aulodrilus limnobius

Oligochaeta

Stephensoniana spp.
Stephensoniana tandyi
Stephensoniana trivandrana
Telmatodrilus vejdovskyi
Tubificidae with capiliform chaetae
Tubificidae without capiliform chaetae
Tubificoides heterochaetus
Tubificoides spp.

Bivalvia

Nucula annulata Nucula proxima Nucula spp. Solemya velum Yoldia limatula

Enteropneusta

Enteropneusta spp.

Oligochaeta

Aulodrilus paucichaeta Aulodrilus pigueti Aulodrilus pluriseta Branchiura sowerbyi Bratislavia unidentata Dero digitata Dero spp. Haber cf. speciosus Homochaeta naidina Ilyodrilus templetoni Isochaetides freyi Limnodrilus cervix Limnodrilus claparedianus Limnodrilus hoffmeisteri Limnodrilus spp. Limnodrilus udekemianus Naididae spp. Nais pardalis Nais pseudobtusa Nais variabilis Oligochaeta spp. Piguetiella michiganensis Pristinella jenkinae Pristinella osborni Quistadrilus multisetosus Specaria josinae

Appendix C. List of species classified as suspension feeders.

Polychaeta

Chaetopterus variopedatus Demonax microphthalmus Sabellidae spp.

Bivalvia

Aligena elevata

Anadara ovalis

Anadara transversa

Anodonta spp.

Barnea truncata

Corbicula fluminea

Donax variabilis

Ensis directus

Gemma gemma

Lyonsia hyalina

Lyonsia spp.

Mactridae spp.

Mercenaria mercenaria

Mulinia lateralis

Musculium spp.

Mya arenaria

Mysella planulata

Pandora spp.

Parvilucina multilineata

Periploma margaritaceum

Petricola pholadiformis

Pisidium spp.

Pitar morrhuanus

Rangia cuneata

Sphaeridae spp.

Spisula solidissima

Tagelus divisus

Tagelus plebeius

Tagelus spp.

Unionidae spp.

Amphipoda

Ampelisca abdita-vadorum complex

Ampelisca spp.

Ampelisca verrilli

Phoronida

Phoronis spp.

Cephalochordata

Branchiostoma caribaeum

Appendix D. List of species classified as interface feeders.

Polvchaeta

Ampharetidae spp. Amphitrite ornata Apoprionospio pygmaea Aricidea catherinae Aricidea wassi Asabellides oculata Boccardiella hamata Boccardiella ligerica Carazziella hobsonae Caulleriella sp. B (Blake)

Cirratulidae spp. Cirriformia grandis Cirrophorus spp. Dipolydora socialis Dispio uncinata

Enoplobranchus sanguineus

Hobsonia florida Levinsenia gracilis Loimia medusa Magelona spp.

Manayunkia aestuarina Marenzelleria viridis Melinna maculata

Monticellina baptisteae-dorsobranchialis

Monticellina spp. Owenia fusiformis Oweniidae spp. Paraonis fulgens Paraprionospio pinnata

Pista cristata Pista spp. Polycirrus spp. Polydora cornuta Polydora spp.

Polydora/Boccardiella spp.

Polygordius spp.

Prionospio heterobranchia

Prionospio perkinsi Prionospio spp. Pseudopolydora spp. Scolelepis bousfieldi Scolelepis spp. Scolelepis squamata Scolelepis texana Spio setosa

Spiochaetopterus costarum

Spionidae spp. Spiophanes bombyx Streblospio benedicti Terebellidae spp. Tharyx sp. A Morris

Bivalvia

Macoma balthica Macoma mitchelli Macoma tenta Tellina agilis Tellinidae spp.

Cumacea

Almyracuma proximoculi Bodotria sp. A Morris Cyclaspis varians Leucon americanus Mancocuma stellifera Oxyurostylis smithi

Tanaidacea

Hargeria rapax Tanaidacea spp.

Tanaissus psammophilus

Amphipoda

Acanthohaustorius millsi Acanthohaustorius similis Americhelidium americanum Ameroculodes species complex Amphipoda spp.

Bathyporeia parkeri Corophium lacustre Eobrolgus spinosus Haustoriidae spp. Lepidactylus dytiscus Leptocheirus plumulosus Listriella barnardi Listriella clymenellae Listriella smithi Listriella spp.

Monoculodes edwardsi Parahaustorius longimerus Phoxocephalidae spp.

Protohaustorius cf. deichmannae

Protohaustorius wigleyi Rhepoxynius hudsoni Unciola dissimilis Unciola irrorata Unciola serrata Unciola spp.

Insecta

Stictochironomous spp.

Sipuncula

Microphiopholis atra

Ophiuroidea

Ophiuroidea spp.

Holothuridea

Havelockia scabra Holothuroidea spp. Leptosynapta tenuis Pentamera pulcherrima

Enteropneusta

Saccoglossus kowalevskii

Appendix E. List of species classified into the carnivore/omnivore feeding group category.

Anthozoa	Polychaeta	Gastropoda	Insecta
Anthozoa spp.	Neanthes arenaceodentata	Gastropoda sp. A Mountford	Chaoborus punctipennis
Edwardsia elegans	Neanthes succinea	Haminoea solitaria	Chaoborus spp.
	Nephtyidae	Ilyanassa obsoleta	Diptera spp.
Nemertea	Nephtys bucera	Lymnaeidae spp.	Ablabesmyia annulata
Amphiporus bioculatus	Nephtys cryptomma	Nassarius spp.	Axarus spp.
Carinoma tremaphoros	Nephtys incisa	Nassarius trivittatus	Chironomidae spp.
Micrura leidyi	Nephtys picta	Nassarius vibex	Chironomini spp.
Nemertinea	Nephtys spp.	Natica pusilla	Chironomus spp.
	Nereididae	Naticidae	Cladopelma spp.
Nematoda	Nereis grayi	Rictaxis punctostriatus	Cladotanytarsus spp.
Nematoda spp.	Onuphidae	•	Clinotanypus pinguis
**	Onuphis eremita	Copepoda	Clinotanypus spp.
Polychaeta	Parahesione luteola	Argulus spp.	Coelotanypus spp.
Aglaophamus verrilli	Paranaitis speciosa	G 11	Cricotopus spp.
Ancistrosyllis hartmanae	Parapionosyllis longicirrata	Stomatopoda	Cricotopus/Orthocladius spp
Ancistrosyllis jonesi	Parougia caeca	Squilla empusa	Cryptochironomus fulvus
Arabella iricolor-multidentata	=	1	Cryptochironomus spp.
Arabellidae spp.	Phyllodoce spp.	Isopoda	Cryptotendipes spp.
Autolytus spp.	Phyllodocidae	Amakusanthura magnifica	Demicryptochironomus spp.
Bhawania heteroseta	Pilargidae	Ancinus depressus	Dicrotendipes spp.
Brania clavata-swedmarki	Pionosyllis spp.	Chiridotea almyra	Endochironomus spp.
Brania spp.	Podarke obscura	Chiridotea coeca	Epoicocladius spp.
Brania wellfleetensis	Podarkeopsis levifuscina	Cyathura burbancki	Glyptotendipes spp.
Cabira incerta	Protodriloides chaetifer	Cyathura polita	Harnischia spp.
Diopatra cuprea	Pseudeurythoe paucibranchiata	Cyathura spp.	Kiefferulus spp.
Drilonereis longa	Scoletoma tenuis	Ptilanthura tenuis	Microchironomus spp.
Eteone foliosa	Sigambra bassi		Nanocladius spp.
Eteone heteropoda	Sigambra spp.	Decapoda	Orthocladiinae
Eteone spp.	Sigambra tentaculata	Alpheus heterochaelis	Parachironomus spp.
Eumida sanguinea	Sphaerosyllis aciculata	Automate sp. A Williams	Paracladopelma spp.
Exogone dispar	Sphaerosyllis taylori	Callianassa setimanus	Paralauterborniella spp.
Exogone spp.	Sthenelais boa	Euceramus praelongus	Phaenopsectra spp.
Glycera americana	Sthenelais spp.	Libinia spp.	Polypedilum halterale group
Glycera dibranchiata	Streptosyllis arenae	Ogyrides alphaerostris	Polypedilum spp.
Glycera spp.	Streptosyllis pettiboneae	Ovalipes ocellatus	Procladius spp.
Glyceridae spp.	Syllidae spp.	Pinnixa chaetopterana	Procladius sublettei
Glycinde solitaria	Syllides spp.	Pinnixa retinens	Pseudochironomus spp.
Goniadidae	Syllides verrilli	Pinnixa spp.	Rheotanytarsus spp.
Gyptis crypta		Polyonyx gibbesi	Tanypodinae
Hesionidae	Oligochaeta	Thalassinidea	Tanypus spp.
Laeonereis culveri	Chaetogaster spp.	Upogebia affinis	Tanytarsini
Lepidametria commensalis	3	- F - G	Tanytarsus spp.
Lumbrineridae spp.	Gastropoda	Insecta	, I.F.
Malmgreniella taylori	Acteocina canaliculata	Ephemeridae	Echinoidea
Marphysa sanguinea	Bithynia tentaculata	Hexagenia limbata	Echinoidea spp.
Microphthalmus aberrans	Busycon spp.	Hexagenia spp.	Mellita quinquiesperforata
Microphthalmus sczelkowii	Caecidae spp.	Bezzia spp.	44
Microphthalmus similis	Caecum regulare	Ceratopogonidae spp.	
Microphthalmus spp.	Caecum sp. A Mountford	Chaoborus albatus	
oprimitation oppi	2.220mm sp. 12 mountain	2	

Appendix F. Number of contaminants exceeding the Effects Range Median concentration (ERM Conc.), the mean Sediment QualityGuidelines (SQG) quotient, the number of missing analytes, and a listing of missing analytes for each station date combination classified as severely degraded or degraded. Habitat type is based on Weisberg et al. (1997).

				Number of			
				Contaminants		Number of	
Station	Date	Estuary	Habitat	Exceeding ERM Conc.	Mean SQG quotient	Missing Analytes	Missing Analytes
CP94084	07/12/94	Albemarle-Chesapeake Canal		0	0.018	0	Prisons rimiyes
AR4	08/26/98	Anacostia River	Tidal Freshwater	4	0.405	3	AG, Total PCBs, 2-Methylnaphthalene
VA90-088	07/08/90	Anacostia River	Tidal Freshwater	1	0.237	1	
VA90-088	08/26/90	Anacostia River	Tidal Freshwater	1	0.237	1	AS
VA92-494	07/29/92	Aquia Creek	Oligohaline	0	0.100	0	
VA90-090	07/08/90	Back River	Oligohaline	3	0.449	1	
VA90-090	07/26/90	Back River	Oligohaline	3	0.449	1	AS
VA90-090	09/05/90	Back River	Oligohaline	3	0.449	1	
VA90-140	08/15/90	Back River	Oligohaline	6	0.723	1	AS
VA91-090	09/05/91	Back River	Low Mesohaline	3	0.451	1	p,pDDE
VA90-081	08/27/90	Bear Creek	Low Mesohaline	3	0.578	1	AS
VA92-483	08/15/92	Big Annemessex River	High Mesohaline Mud	0	0.035	0	
MET06424	09/09/99	Bohemia River	Oligohaline	2	0.437	5	Acenaph thene, Acenaph thylene, Dibenz (a,h) anthracene, 2 Methylnaph thalene, Naph
MET06425	09/09/99	Bohemia River	Oligohaline	0	0.034	5	A cenaph thene, A cenaph thylene, Dibenz (a,h) anthracene, 2 Methylnaph thalene, Naph thalene, Nap
VA90-089	08/07/90	Bohemia River	Oligohaline	0	0.068	1	AS
VA92-521	08/28/92	Bohemia River	Oligohaline	2	2.867	0	
VA91-306	07/28/91	Breton Bay	High Mesohaline Sand	0	0.036	0	
VA91-312	07/28/91	Breton Bay	High Mesohaline Mud	0	0.065	0	
VA92-452	08/09/92	Broad/Linkhorn Bay	Polyhaline Mud	0	0.091	0	
VA90-091	08/14/90	Bush River	Tidal Freshwater	0	0.109	1	AS
VA92-519	08/05/92	Bush River	Oligohaline	0	0.231	0	
VA90-050	07/20/90	Chesapeake Bay	High Mesohaline Sand	0	0.022	1	AS
VA90-056	08/19/90	Chesapeake Bay	Polyhaline Mud	0	0.038	1	AS
VA90-059	07/22/90	Chesapeake Bay	Polyhaline Mud	0	0.029	1	AS

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
VA90-062	07/05/90	Chesapeake Bay	High Mesohaline Mud	0	0.054	1	
VA90-062	08/24/90	Chesapeake Bay	Polyhaline Mud	0	0.054	1	AS
VA90-062	09/07/90	Chesapeake Bay	Polyhaline Mud	0	0.054	1	
VA90-065	09/07/90	Chesapeake Bay	High Mesohaline Sand	0	0.002	1	
VA90-066	08/24/90	Chesapeake Bay	High Mesohaline Mud	0	0.082	1	AS
VA90-080	08/16/90	Chesapeake Bay	Polyhaline Mud	0	0.073	1	AS
VA91-050	07/11/91	Chesapeake Bay	High Mesohaline Mud	0	0.049	1	p,pDDE
VA91-282	08/12/91	Chesapeake Bay	Polyhaline Mud	0	0.049	1	p,pDDE
VA91-283	08/23/91	Chesapeake Bay	Polyhaline Mud	0	0.043	1	p,pDDE
VA91-303	08/27/91	Chesapeake Bay	High Mesohaline Mud	0	0.088	1	p,pDDE
VA91-325	08/15/91	Chesapeake Bay	High Mesohaline Mud	0	0.160	1	p,pDDE
VA91-426	07/10/91	Chesapeake Bay	High Mesohaline Mud	0	0.047	0	
VA92-050	08/03/92	Chesapeake Bay	High Mesohaline Mud	0	0.037	0	
VA92-058	08/30/92	Chesapeake Bay	Low Mesohaline	0	0.020	0	
VA92-455	08/08/92	Chesapeake Bay	Polyhaline Sand	0	0.006	0	
VA92-482	08/30/92	Chesapeake Bay	Polyhaline Mud	0	0.056	0	
VA92-497	08/14/92	Chesapeake Bay	Polyhaline Mud	0	0.083	0	
VA92-500	08/30/92	Chesapeake Bay	Polyhaline Sand	0	0.018	0	
VA93-050	07/29/93	Chesapeake Bay	High Mesohaline Sand	0	0.010	0	
VA93-050	08/26/93	Chesapeake Bay	High Mesohaline Mud	0	0.077	0	
VA93-617	08/22/93	Chesapeake Bay	High Mesohaline Mud	0	0.049	0	
VA93-622	08/07/93	Chesapeake Bay	High Mesohaline Sand	0	0.010	0	
VA93-626	09/03/93	Chesapeake Bay	Polyhaline Sand	0	0.013	0	
VA93-630	08/04/93	Chesapeake Bay	High Mesohaline Mud	0	0.052	0	
VA93-644	09/02/93	Chesapeake Bay	Polyhaline Mud	0	0.046	0	

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
VA93-647	08/05/93	Chesapeake Bay	High Mesohaline Mud	0	0.094	0	
VA93-650	08/29/93	Chesapeake Bay	High Mesohaline Sand	0	0.006	0	
VA93-653	08/27/93	Chesapeake Bay	High Mesohaline Mud	0	0.135	0	
VA93-657	08/25/93	Chesapeake Bay	High Mesohaline Mud	0	0.137	0	
MMS-0450	8 09/17/97	Chesapeake Bay Mainstem	High Mesohaline Sand	0	0.007	3	Total PCBs, p,pDDE, Total DDTs
MMS-0451	2 09/16/97	Chesapeake Bay Mainstem	High Mesohaline Mud	0	0.075	2	Total PCBs, Total DDTs
MMS-0451	5 09/02/97	Chesapeake Bay Mainstem	High Mesohaline Mud	0	0.101	2	Total PCBs, Total DDTs
UPB-04613	09/03/97	Chesapeake Bay Mainstem	High Mesohaline Mud	0	0.138	0	
UPB-04621	08/26/97	Chesapeake Bay Mainstem	Tidal Freshwater	0	0.060	1	Total PCBs,
VBY-04M1	4 08/04/97	Chesapeake Bay Mainstem	Polyhaline Sand	0	0.003	2	Total PCBs, Total DDTs
VBY-04M1	6 08/11/97	Chesapeake Bay Mainstem	Polyhaline Mud	0	0.026	2	Total PCBs, Total DDTs
VBY-04M2	2 08/12/97	Chesapeake Bay Mainstem	Polyhaline Mud	0	0.029	2	Total PCBs, Total DDTs
VBY-04M2	4 08/12/97	Chesapeake Bay Mainstem	Polyhaline Mud	0	0.044	2	Total PCBs, Total DDTs
VBY-04M3	0 08/12/97	Chesapeake Bay Mainstem	Polyhaline Sand	0	0.026	2	Total PCBs, Total DDTs
CR59	09/10/98	Chester River	High Mesohaline Mud	0	0.035	3	AG,Total PCBs 2-Methylnaphthalene
CR61	09/10/98	Chester River	High Mesohaline Sand	0	0.015	3	AG,Total PCBs 2-Methylnaphthalene
VA93-661	08/05/93	Chester River	Low Mesohaline	0	0.135	0	
CH10	09/15/99	Choptank River	Oligohaline	0	0.022	4	AG, Total PCBs, Total DDTs, 2-Methylnaphthalene
СН9	09/15/99	Choptank River	Low Mesohaline	0	0.026	4	AG, Total PCBs, Total DDTs, 2-Methylnaphthalene
VA90-082	08/27/90	Colgate Cove	Low Mesohaline	2	0.236	1	AS
VA93-620	08/08/93	Corrotoman River	High Mesohaline Mud	0	0.069	0	
VA93-730	08/08/93	Corrotoman River	High Mesohaline Mud	0	0.054	0	
MA98-1021	08/27/98	Eastern Bay	High Mesohaline Sand	0	0.011	2	Total PCBs, Total DDTs
MA98-1022	2 08/29/98	Eastern Bay	High Mesohaline Mud	0	0.063	2	Total PCBs, Total DDTs
MA98-1023	8 08/27/98	Eastern Bay	High Mesohaline Sand	0	0.006	3	HG, Total PCBs, Total DDTs

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
MA98-1028	08/26/98	Eastern Bay	High Mesohaline Mud	0	0.056	2	Total PCBs, Total DDTs
MA98-1029	08/26/98	Eastern Bay	High Mesohaline Mud	0	0.040	2	Total PCBs, Total DDTs
MA98-1030	08/26/98	Eastern Bay	High Mesohaline Mud	0	0.038	2	Total PCBs, Total DDTs
VA90-086	08/01/90	Elizabeth River	Polyhaline Mud	1	0.342	1	AS
VA90-086	09/13/90	Elizabeth River	Polyhaline Mud	1	0.342	1	
VA91-308	08/29/91	Fishing Bay	High Mesohaline Mud	0	0.038	0	
VA91-286	08/11/91	Great Wicomico River	Polyhaline Mud	0	0.061	0	
VA91-290	08/11/91	Great Wicomico River	High Mesohaline Mud	0	0.085	0	
JAM-04J01	08/25/97	James River	Polyhaline Mud	0	0.129	1	Total PCBs
JAM-04J05	08/25/97	James River	Polyhaline Mud	0	0.050	2	Total PCBs, TotalDDTs
JAM-04J26	08/21/97	James River	Oligohaline	0	0.085	1	Total PCBs
JAM06J17	08/03/99	James River	Tidal Freshwater	0	0.244	5	Acenaph thene,Acenaph thylene,Dibenz [a,h] an thracene,2-Methylnaph thalene,Naph thalene
JAM06J23	08/03/99	James River	Tidal Freshwater	0	0.120	5	Acenaph thene,Acenaph thylene,Dibenz [a,h] an thracene,2-Methylnaph thalene,Naph thalene
VA90-208	08/22/90	James River	Tidal Freshwater	0	0.034	1	AS
VA90-210	07/23/90	James River	Tidal Freshwater	0	0.010	1	AS
VA91-273	08/04/91	James River	Tidal Freshwater	0	0.115	1	p,pDDE
VA91-275	08/05/91	James River	Tidal Freshwater	1	0.080	0	
VA92-464	08/17/92	James River	Tidal Freshwater	0	0.061	0	
VA93-602	08/13/93	James River	Polyhaline Mud	0	0.098	0	
VA93-609	08/15/93	James River	Tidal Freshwater	0	0.104	0	
VA93-610	08/16/93	James River	Tidal Freshwater	0	0.029	0	
VA93-728	08/15/93	James River	Oligohaline	0	0.110	0	
MMS-04514	09/02/97	Little Choptank River	High Mesohaline Sand	0	0.006	2	Total PCBs, Total DDTs
VA91-322	08/15/91	Little Choptank River	High Mesohaline Mud	0	0.025	1	p,pDDE
VA91-323	08/15/91	Little Choptank River	High Mesohaline Mud	0	0.037	1	p,pDDE

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
MWT06309	09/08/99	Magothy River	Low Mesohaline	2	0.410	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
MWT06310	09/08/99	Magothy River	Low Mesohaline	0	0.034	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
VA92-136	08/04/92	Middle River	Oligohaline	0	0.077	0	
VA92-136	08/29/92	Middle River	Oligohaline	0	0.307	0	
VA93-136	08/03/93	Middle River	Oligohaline	2	0.268	0	
VA93-136	08/30/93	Middle River	Low Mesohaline	0	0.132	0	
VA91-330	08/17/91	Miles River	High Mesohaline Mud	0	0.051	1	p,pDDE
VA91-331	08/16/91	Miles River	High Mesohaline Mud	0	0.056	1	p,pDDE
VA92-466	08/21/92	Mobjack Bay	Polyhaline Mud	0	0.048	0	
VA92-451	08/10/92	Nansemond River	High Mesohaline Mud	0	0.081	0	
VA90-134	07/07/90	Patapsco River	Low Mesohaline	1	0.210	1	
VA90-134	08/15/90	Patapsco River	Low Mesohaline	1	0.210	1	AS
VA90-134	09/06/90	Patapsco River	High Mesohaline Mud	1	0.210	1	
PXR-04216	09/05/97	Patuxent River	High Mesohaline Mud	0	0.066	2	Total PCBs, Total DDTs
PXR-04223	09/12/97	Patuxent River	High Mesohaline Sand	0	0.046	2	Total PCBs, Total DDTs
PXR06207	08/31/99	Patuxent River	High Mesohaline Mud	3	0.617	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
VA91-280	08/09/91	Piankatank River	High Mesohaline Mud	0	0.052	0	
PMR-04101	09/15/97	Potomac River	High Mesohaline Mud	0	0.070	2	Total PCBs, Total DDTs
PMR-04102	09/15/97	Potomac River	High Mesohaline Sand	0	0.010	2	Total PCBs, Total DDTs
PMR-04104	09/15/97	Potomac River	High Mesohaline Mud	0	0.082	2	Total PCBs, Total DDTs
PMR-04108	09/15/97	Potomac River	High Mesohaline Mud	0	0.081	2	Total PCBs, Total DDTs
PMR-04110	09/16/97	Potomac River	High Mesohaline Sand	0	0.008	2	Total PCBs, Total DDTs
PMR-04111	09/16/97	Potomac River	High Mesohaline Mud	0	0.095	2	Total PCBs, Total DDTs
PMR-04112	09/16/97	Potomac River	High Mesohaline Mud	0	0.090	2	Total PCBs, Total DDTs
PMR-04115	09/16/97	Potomac River	High Mesohaline Mud	0	0.091	2	Total PCBs, Total DDTs

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
PMR06106	09/20/99	Potomac River	High Mesohaline Mud	1	0.247	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
VA90-180	08/16/90	Potomac River	High Mesohaline Sand	0	0.016	1	AS
VA90-182	08/06/90	Potomac River	Low Mesohaline	0	0.046	1	AS
VA90-188	08/26/90	Potomac River	Tidal Freshwater	0	0.138	1	AS
VA91-302	07/28/91	Potomac River	High Mesohaline Sand	0	0.012	0	
VA92-188	07/27/92	Potomac River	Tidal Freshwater	0	0.118	0	
VA92-489	07/30/92	Potomac River	Low Mesohaline	0	0.086	0	
VA93-637	08/11/93	Potomac River	High Mesohaline Mud	0	0.080	0	
VA93-645	08/10/93	Potomac River	Oligohaline	0	0.125	0	
RAP-04R01	08/28/97	Rappahannock River	High Mesohaline Mud	0	0.053	2	Total PCBs, Total DDTs
RAP-04R05	08/28/97	Rappahannock River	High Mesohaline Mud	0	0.055	3	Total PCBs, p,pDDE, Total DDTs
RAP-04R12	08/28/97	Rappahannock River	High Mesohaline Mud	0	0.058	3	Total PCBs, p,pDDE, Total DDTs
RAP-04R15	08/28/97	Rappahannock River	High Mesohaline Mud	0	0.056	2	Total PCBs, TotalDDTs
RAP-04R17	08/28/97	Rappahannock River	High Mesohaline Mud	0	0.058	3	Total PCBs, p,pDDE, TotalDDTs
RAP-04R25	09/17/97	Rappahannock River	High Mesohaline Sand	0	0.049	2	Total PCBs, Total DDTs
RP1	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.043	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP2	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.047	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP3	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.043	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP4	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.040	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP5	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.041	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP6	08/11/99	Rappahannock River	High Mesohaline Mud	0	0.015	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP8	08/10/99	Rappahannock River	High Mesohaline Mud	0	0.029	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
RP9	08/10/99	Rappahannock River	Low Mesohaline	0	0.048	4	AG, Total PCBs, TotalDDTs, 2-Methylnaphthalene
VA90-084	08/14/90	Rappahannock River	High Mesohaline Mud	0	0.040	1	AS
VA90-190	08/15/90	Rappahannock River	High Mesohaline Mud	0	0.035	1	AS

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
VA90-192	07/06/90	Rappahannock River	Oligohaline	0	0.050	1	
VA90-192	09/07/90	Rappahannock River	Oligohaline	0	0.050	1	
VA90-196	08/05/90	Rappahannock River	Tidal Freshwater	0	0.037	1	AS
VA91-294	07/30/91	Rappahannock River	Oligohaline	0	0.050	0	
VA91-298	07/30/91	Rappahannock River	Tidal Freshwater	0	0.062	0	
VA92-477	08/04/92	Rappahannock River	High Mesohaline Mud	1	0.228	0	
VA92-481	08/06/92	Rappahannock River	Oligohaline	0	0.061	0	
VA93-628	08/19/93	Rappahannock River	Oligohaline	0	0.067	0	
VA92-504	08/06/92	South River	Low Mesohaline	0	0.137	0	
VA91-304	07/24/91	St Clements Bay	High Mesohaline Mud	0	0.061	1	p,pDDE
VA92-486	08/28/92	St Marys River	High Mesohaline Mud	0	0.051	0	
VA91-351	07/30/91	Susquehanna River	Tidal Freshwater	0	0.085	0	
MMS-0451	1 09/17/97	Tangier Sound	High Mesohaline Sand	0	0.006	3	Total PCBs, p,pDDE, TotalDDTs
VA92-045	08/02/92	Tangier Sound	High Mesohaline Mud	0	0.015	0	
VA93-627	08/09/93	Tangier Sound	High Mesohaline Mud	0	0.038	0	
VA93-652	08/28/93	Tred Avon River	Low Mesohaline	0	0.055	0	
VA91-332	08/16/91	Wye River	High Mesohaline Mud	0	0.032	1	p,pDDE
VA93-729	08/28/93	York River	Low Mesohaline	0	0.031	0	
YRK-04Y02	2 08/26/97	York River	Polyhaline Mud	0	0.051	2	Total PCBs, Total DDTs
YRK-04Y14	4 08/26/97	York River	High Mesohaline Sand	0	0.036	2	Total PCBs, Total DDTs
YRK-04Y23	3 09/16/97	York River	High Mesohaline Sand	0	0.047	2	Total PCBs, Total DDTs
YRK06Y16	08/10/99	York River	Low Mesohaline	0	0.082	5	Acenaph thene,Acenaph thylene,Dibenz [a,h] anthracene,2-Methylnaph thalene,Naph thalene
YRK06Y18	08/04/99	York River	Low Mesohaline	1	0.167	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
YRK06Y21	08/04/99	York River	Oligohaline	1	0.194	5	Acenaphthene, Acenaphthylene, Dibenz[a,h]anthracene, 2-Methylnaphthalene, Naphthalene
MA97-0061	07/27/97	Unknown	Polyhaline Sand	0	0.012	2	Total PCBs, Total DDTs

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
MA97-0062	07/26/97	Unknown	Polyhaline Mud	0	0.043	2	Total PCBs, Total DDTs
MA97-0063	07/26/97	Unknown	Polyhaline Sand	0	0.008	2	Total PCBs, Total DDTs
MA97-0064	07/27/97	Unknown	Polyhaline Mud	0	0.047	2	Total PCBs, Total DDTs
MA97-0065	07/26/97	Unknown	Polyhaline Mud	0	0.053	2	Total PCBs, Total DDTs
MA97-0068	07/26/97	Unknown	Polyhaline Mud	0	0.055	2	Total PCBs, Total DDTs
MA97-0069	07/27/97	Unknown	Polyhaline Mud	0	0.043	2	Total PCBs, Total DDTs
MA97-0071	07/29/97	Unknown	Tidal Freshwater	0	0.059	2	Total PCBs, Total DDTs
MA97-0076	07/31/97	Unknown	Polyhaline Mud	0	0.049	2	Total PCBs, Total DDTs
MA97-0084	08/30/97	Unknown	Polyhaline Sand	0	0.005	2	Total PCBs, Total DDTs
MA97-0090	08/26/97	Unknown	High Mesohaline Mud	1	0.308	1	Total PCBs
MA97-0096	07/30/97	Unknown	High Mesohaline Mud	0	0.083	1	Total PCBs
MA97-0110	08/04/97	Unknown	Low Mesohaline	0	0.175	2	Total PCBs, Total DDTs
MA97-0112	08/05/97	Unknown	Low Mesohaline	0	0.107	2	Total PCBs, Total DDTs
MA97-0113	08/06/97	Unknown	Low Mesohaline	0	0.203	1	Total PCBs
MA97-0114	08/07/97	Unknown	Low Mesohaline	0	0.188	2	Total PCBs, Total DDTs
MA97-0116	08/06/97	Unknown	Low Mesohaline	0	0.182	2	Total PCBs, Total DDTs
MA97-0117	08/08/97	Unknown	Low Mesohaline	0	0.150	1	Total PCBs
MA97-0118	08/07/97	Unknown	Low Mesohaline	0	0.262	2	Total PCBs, Total DDTs
MA97-0119	08/09/97	Unknown	Low Mesohaline	0	0.076	2	Total PCBs, Total DDTs
MA97-0120	08/09/97	Unknown	Low Mesohaline	1	0.272	1	Total PCBs
MA97-0121	08/08/97	Unknown	Low Mesohaline	0	0.196	2	Total PCBs, Total DDTs
MA97-0122	08/08/97	Unknown	Low Mesohaline	0	0.015	2	Total PCBs, Total DDTs
MA97-0124	08/15/97	Unknown	Low Mesohaline	0	0.016	2	Total PCBs, Total DDTs
MA97-0125	08/09/97	Unknown	Low Mesohaline	0	0.154	2	Total PCBs, Total DDTs
MA97-0126	08/14/97	Unknown	High Mesohaline Mud	0	0.152	2	Total PCBs, Total DDTs

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
MA97-0128	08/10/97	Unknown	Low Mesohaline	0	0.190	2	Total PCBs, Total DDTs
MA97-0129	08/12/97	Unknown	High Mesohaline Mud	0	0.146	2	Total PCBs, Total DDTs
MA97-0131	08/15/97	Unknown	Low Mesohaline	0	0.116	0	
MA97-0132	08/11/97	Unknown	High Mesohaline Mud	0	0.166	2	Total PCBs, Total DDTs
MA97-0134	08/11/97	Unknown	High Mesohaline Mud	0	0.182	2	Total PCBs, Total DDTs
MA97-0137	08/13/97	Unknown	High Mesohaline Mud	0	0.171	1	Total PCBs
MA97-0138	08/19/97	Unknown	Low Mesohaline	0	0.219	1	Total DDTs
MA97-0141	08/19/97	Unknown	Low Mesohaline	1	0.198	1	Total DDTs
MA97-0142	08/18/97	Unknown	Low Mesohaline	1	0.308	2	Total PCBs, Total DDTs
MA97-0144	08/19/97	Unknown	High Mesohaline Mud	0	0.159	2	Total PCBs, Total DDTs
MA97-0145	08/18/97	Unknown	Low Mesohaline	2	0.243	1	Total DDTs
MA97-0146	08/22/97	Unknown	Low Mesohaline	0	0.228	2	Total PCBs, Total DDTs
MA97-0147	08/16/97	Unknown	Low Mesohaline	0	0.068	2	Total PCBs, Total DDTs
MA97-0148	08/16/97	Unknown	Low Mesohaline	0	0.135	2	Total PCBs, Total DDTs
MA97-0152	08/23/97	Unknown	High Mesohaline Mud	0	0.148	2	Total PCBs, Total DDTs
MA97-0153	08/25/97	Unknown	High Mesohaline Mud	0	0.126	1	Total PCBs
MA97-0159	08/21/97	Unknown	High Mesohaline Sand	0	0.008	2	Total PCBs, Total DDTs
MA97-0163	08/21/97	Unknown	High Mesohaline Sand	0	0.019	3	Total PCBs, p,pDDE, Total DDTs
MA97-0177	07/28/97	Unknown	Oligohaline	0	0.078	2	Total PCBs, Total DDTs
MA97-0228	08/01/97	Unknown	Polyhaline Mud	0	0.069	1	Total PCBs
MA97-0229	08/01/97	Unknown	Polyhaline Mud	1	0.121	1	Total PCBs
MA97-0230	08/03/97	Unknown	Polyhaline Mud	0	0.051	1	Total PCBs
MA97-0231	08/01/97	Unknown	Polyhaline Mud	0	0.059	1	Total PCBs
MA97-0232	07/31/97	Unknown	Polyhaline Mud	0	0.049	2	Total PCBs, Total DDTs
MA97-0233	08/03/97	Unknown	Polyhaline Mud	0	0.057	1	Total PCBs

Appendix F. Continued.

Station	Date	Estuary	Habitat Type	Number of Contaminants Exceeding ERM Conc.	Mean SQG quotient	Number of Missing Analytes	Missing Analytes
MA97-0234	07/31/97		Polyhaline Mud	0	0.051	2	Total PCBs, Total DDTs
MA97-0236	08/03/97	Unknown	Polyhaline Sand	0	0.005	2	Total PCBs, Total DDTs
MA97-0237	08/29/97	Unknown	High Mesohaline Mud	0	0.052	2	Total PCBs, Total DDTs
MA97-0238	08/27/97	Unknown	High Mesohaline Mud	0	0.054	2	Total PCBs, Total DDTs
MA97-0241	08/27/97	Unknown	High Mesohaline Sand	0	0.018	2	Total PCBs, Total DDTs
MA97-0242	08/29/97	Unknown	High Mesohaline Sand	0	0.022	1	Total PCBs
MA97-0243	08/28/97	Unknown	High Mesohaline Mud	0	0.049	2	Total PCBs, Total DDTs
MA97-0244	08/28/97	Unknown	High Mesohaline Sand	0	0.013	2	Total PCBs, Total DDTs
MA97-0245	08/28/97	Unknown	High Mesohaline Mud	0	0.069	2	Total PCBs, Total DDTs
MA97-0246	08/28/97	Unknown	High Mesohaline Sand	0	0.015	2	Total PCBs, Total DDTs
OL-01	08/27/96	Unknown	Oligohaline	0	0.047	2	Total PCBs, 2-Methylnaphthalene
OL-08	08/29/96	Unknown	Oligohaline	0	0.075	2	Total PCBs, 2-Methylnaphthalene
OL-09	08/29/96	Unknown	Oligohaline	0	0.076	2	Total PCBs, 2-Methylnaphthalene
OL-11	09/15/96	Unknown	Oligohaline	0	0.032	2	Total PCBs, 2-Methylnaphthalene
OL-12	09/12/96	Unknown	Oligohaline	0	0.137	2	Total PCBs, 2-Methylnaphthalene
OL-14	09/15/96	Unknown	Oligohaline	0	0.117	2	Total PCBs, 2-Methylnaphthalene
OL-15	09/12/96	Unknown	Oligohaline	0	0.035	2	Total PCBs, 2-Methylnaphthalene
OL-20	09/12/96	Unknown	Oligohaline	0	0.135	2	Total PCBs, 2-Methylnaphthalene
TF-03	09/19/96	Unknown	Tidal Freshwater	0	0.044	2	Total PCBs, 2-Methylnaphthalene
TF-04	09/19/96	Unknown	Tidal Freshwater	0	0.041	2	Total PCBs, 2-Methylnaphthalene
TF-06	09/19/96	Unknown	Tidal Freshwater	0	0.015	2	Total PCBs, 2-Methylnaphthalene
TF-08	09/19/96	Unknown	Tidal Freshwater	0	0.072	2	Total PCBs, 2-Methylnaphthalene
TF-16	09/05/96	Unknown	Tidal Freshwater	0	0.050	2	Total PCBs, 2-Methylnaphthalene
TF-18	09/15/96	Unknown	Tidal Freshwater	0	0.074	2	Total PCBs, 2-Methylnaphthalene
TF-19	09/18/96	Unknown	Tidal Freshwater	0	0.044	2	Total PCBs, 2-Methylnaphthalene

Appendix F. Continued.

				Number of Contaminants		Number of	
				Exceeding	Mean SQG	Missing	
Station	Date	Estuary	Habitat Type	ERM Conc.	quotient	Analytes	Missing Analytes
TF-20	09/25/96	Unknown	Tidal Freshwater	0	0.115	2	Total PCBs, 2-Methylnaphthalene
TF-21	09/19/96	Unknown	Tidal Freshwater	0	0.115	2	Total PCBs, 2-Methylnaphthalene
TF-22	09/20/96	Unknown	Tidal Freshwater	0	0.034	2	Total PCBs, 2-Methylnaphthalene
TF-23	09/19/96	Unknown	Tidal Freshwater	0	0.121	2	Total PCBs, 2-Methylnaphthalene
TF-24	09/19/96	Unknown	Tidal Freshwater	0	0.081	2	Total PCBs, 2-Methylnaphthalene
TF-25	09/20/96	Unknown	Tidal Freshwater	0	0.167	2	Total PCBs, 2-Methylnaphthalene
TF-28	09/11/96	Unknown	Tidal Freshwater	1	0.174	2	Total PCBs, 2-Methylnaphthalene

Appendix G. Correlations between benthic bioindicators and salinity. Shown are the p values for the statistical test and Pearson's correlation coefficients r values for each bioindicator. Values in gray and bold face type are those selected for salinity correction.

	Abundance		Speci Richn		Relati Abunda		Dominance	Dive	reity	Total Bio	macc*
T	p value 0.0317		p value <0.0001	-0.30			p value r val	ie p value	r value	p value	r value
Isopoda		-0.14			0.0183	-0.15	-	-		-	
Amphipoda	0.0309	-0.14	0.2538	0.07	0.0221	-0.15	-	-		-	
Haustoriidae	0.0976	0.11	0.0113	0.16	0.1107	0.10	-	-		-	
Ampeliscidae	0.0353	0.13	< 0.0001	0.32	0.0062	0.17	-	-		-	
Corophiidae	0.7316	-0.02	0.3489	-0.06	0.4180	-0.05	-	-		-	
Mollusca	0.3157	0.06	0.0010	0.21	< 0.0001	0.26	-	-		-	
Bivalvia	0.3628	0.06	0.7926	-0.02	0.1770	0.09	-	-		-	
Gastropoda	< 0.0001	0.27	< 0.0001	0.49	< 0.0001	0.36	-	-		-	
Polychaeta	0.0011	0.21	<0.0001	0.54	<0.0001	0.59	-	-		-	
Spionidae	0.0855	0.11	< 0.0001	0.37	< 0.0001	0.33	-	-		-	
Capitellidae	0.0019	0.20	< 0.0001	0.47	< 0.0001	0.39	-	-		-	
Nereidae	0.0304	0.14	< 0.0001	0.27	< 0.0001	0.25	-	-		-	
Oligochaeta	< 0.0001	-0.35	<0.0001	-0.65	<0.0001	-0.65	-	-		-	
Tubificidae	< 0.0001	-0.41	<0.0001	-0.68	<0.0001	-0.70	-	-		-	
Deep Deposit Feeder	< 0.0001	-0.31	<0.0001	-0.51	< 0.0001	-0.43	-	-		-	
Suspension Feeder	0.3641	0.06	0.1119	0.10	0.9672	-0.002	-	-		-	
Interface Feeder	0.9589	0.003	< 0.0001	0.27	< 0.0001	0.37	-	-		-	
Carnivore/Omnivore	0.3583	-0.06	0.0002	0.23	0.7780	0.02	-	-		-	
Total Infauna	0.1205	-0.10	0.8057	-0.02	-		0.5168 0.0	4 0.3216	0.06	0.8757	-0.01
Epifauna	-		0.1134	0.10	0.0834	0.11	0.6067 0.0	3 0.2260	0.08	-	

^{*}includes epifaunal species biomass

Appendix H. Regression relationships for salinity corrections of selected benthic bioindicators.

				~ . ~			
				Species R	ichness (Li	near Relatio	onship)
Caumaa	DE	Sum of	Mean	E Walna	Duch > E	D. Cananad	Equation
Source	D.F.	Squares 567.146	567.146			R-Squared	
Model Error	1 243	1361.076	5.601	101.20	< 0.0001	0.29	0.299+0.206*Salinity
Corrected		1928.222	3.001				
Proportional Abundance of Polychaetes (Linear Relationship)							
		Sum of	Mean			,	•
Source	D.F.	Squares	Square	F Value	Prob. $> F$	R-Squared	Equation
Model	1	9.759	9.759	127.33	< 0.0001	0.34	0.041+0.027*Salinity
Error	243	18.624	0.077				
Corrected	244	28.384	11 1 .	a , b	. 1 /7	. D.1.:	1:\
Oligochaete Species Richness (Linear Relationship) Sum of Mean							
Course	DE	Squares		E Volue	Drob > E	D Canarad	Equation
Source Model	D.F. 1	351.491	351.492		<0.0001	R-Squared	3.13-0.1623*Salinity
Error	243	473.374	1.948	180.43	<0.0001	0.43	5.15-0.1625 Sammy
Corrected	244	824.866	1.740				
Contractor			ochaete St	ecies Ric	hness(Poly	nomial Rela	tionship)
		Sum of	Mean				
Source	D.F.	Squares	Square	F Value	Prob. $> F$	R-Squared	Equation
Model	3	476.414	158.805	109.83	< 0.0001	0.58	4.143-0.733*Sal+0.0463*Sal ² -0.001*Sal ³
Error	241	348.452	1.446				
Corrected	244	824.866		1 0	011 1	/T ·	
-				idance of	Oligochaet	es (Linear F	Relationship)
G	D.E.	Sum of	Mean	F 17 1	D 1 E	D. C	
Source	D.F.	Squares				R-Squared	
Model	1	12.076	12.076	181.70	< 0.0001	0.43	0.624-0.030*Salinity
Error Corrected	243 244	16.149 28.225	0.066				
Corrected	244		Fubificid S	necies Ric	chness (Lin	ear Relation	nshin)
		Sum of	Mean	peeres ru		110141101	······
Source	D.F.	Squares	Square	F Value	Prob. $> F$	R-Squared	Equation
Model	1	364.483	364.48	204.01			2.865-0.165*Salinity
Error	243	434.132	1787				·
Corrected	244	798.614					
Tubificid Species Richness (Polynomial Relationship)							
C	D.F.	Sum of	Mean	F 1/ 1	D. I E	D.C. 1	E d'
Source	D.F.	Squares				R-Squared	
Model	3	511.690	170.563	143.26	< 0.0001	0.64	3.958-0.786*Sal+0.0497*Sal ² -0.001*Sal ³
Error Corrected	241 244	286.924 798.614	1.191				
Corrected	244		rtional Ab	ındance o	f Tubificid	s (Linear Re	elationshin)
		Sum of	Mean	andunce o	1 Tuomicia	5 (Ellicai Te	nationship)
Source	D.F.	Squares	Square	F Value	Prob. $> F$	R-Squared	Equation
Model	1	13.539	13.539	239.19	< 0.0001	0.50	0.561-0.0319*Salinity
Error	243	13.755	0.057				•
Corrected	244	27.294					
		Rich		ep Depos	it Feeders (Linear Rela	tionship)
~		Sum of	Mean				
Source	D.F.	Squares				R-Squared	
Model	1	146.72	146.722	53.59	< 0.0001	0.18	3 3.061-0.104*Salinity
Error Corrected	243	665.266	2.738				
Corrected	244	811.99 Richne	ess of Deer	Deposit 1	Feeders (Pa	olynomial R	elationshin)
Richness of Deep Deposit Feeders (Polynomial Relationship) Sum of Mean							
Source	D.F.	Squares		F Value	Prob. > F	R-Squared	Equation
Model	1	302.65	100.88	47.73	< 0.0001		7 4.18-0.737*Sal+0.050*Sal ² -0.001* Sal ³
Error	243	509.34	2.11		1	0.57	
Corrected	244	811.99					